A363320 a(n) is the product of the frequencies of the distinct values obtained when the Euler totient function is applied to the divisors of n.
1, 2, 1, 2, 1, 4, 1, 2, 1, 4, 1, 6, 1, 4, 1, 2, 1, 8, 1, 4, 1, 4, 1, 12, 1, 4, 1, 4, 1, 16, 1, 2, 1, 4, 1, 12, 1, 4, 1, 6, 1, 16, 1, 4, 1, 4, 1, 24, 1, 8, 1, 4, 1, 16, 1, 4, 1, 4, 1, 54, 1, 4, 2, 2, 1, 16, 1, 4, 1, 16, 1, 24, 1, 4, 1, 4, 1, 16, 1, 12, 1, 4, 1, 36, 1, 4, 1, 4, 1, 64
Offset: 1
Keywords
Examples
The divisors of 12 are {1, 2, 3, 4, 6, 12} and their phi values are {1, 1, 2, 2, 2, 4} whose sum is also 12. The set of distinct values are {1, 2, 4} which occur with multiplicities {2, 3, 1} respectively. Therefore, a(12) = 2*3*1 = 6.
Programs
-
Mathematica
a[n_] := Times @@ Tally[EulerPhi[Divisors[n]]][[;; , 2]]; Array[a, 100] (* Amiram Eldar, May 27 2023 *)
-
PARI
a(n)=my(f=vector(n)); fordiv(n,d,f[eulerphi(d)]++); vecprod([t | t<-f, t>0]) \\ Andrew Howroyd, May 27 2023
Comments