cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363332 a(n) is the number of divisors of n that are both coreful and bi-unitary.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, May 28 2023

Keywords

Comments

For the definition of a coreful divisor see A307958, and for the definition of a bi-unitary divisor see A222266.
If e > 0 is the exponent of the highest power of p dividing n (where p is a prime), then for each divisor d of n that is both a coreful and an bi-unitary divisor, the exponent of the highest power of p dividing d is a number k >= 1 that is not equal to e/2.
All the terms are odd.

Examples

			a(8) = 3 since 8 has 4 divisors, 1, 2, 4 and 8, all are bi-unitary and 3 of them (2, 4 and 8) are also coreful.
		

Crossrefs

Cf. A004709, A005361 (number of coreful divisors), A222266, A286324, A362852.

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], e, e - 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 120]
  • PARI
    a(n)={my(e = factor(n)[,2]); prod(i=1, #e, e[i] - 1 + e[i] % 2);}

Formula

Multiplicative with a(p^e) = e - 1 + (e mod 2).
a(n) = 1 if and only if n is cubefree (A004709).
a(n) >= A362852(n), with equality if and only if n is cubefree.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (1 + 2/(p^3-p)) = 1.48264570900305853294... .
Dirichlet g.f.: zeta(s) * zeta(2*s) * Product_{p prime} (1 - 1/p^(2*s) + 2/p^(3*s)). - Amiram Eldar, Sep 24 2023