cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A372601 The maximal exponent in the prime factorization of the largest exponentially odd divisor of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, May 07 2024

Keywords

Comments

First differs from A331273 at n = 64.
Differs from A363332 at n = 1, 216, 432, 648, 864, 1000, ... .

Crossrefs

Programs

  • Mathematica
    f[n_] := n - If[EvenQ[n], 1, 0]; a[n_] := f[Max[FactorInteger[n][[;; , 2]]]]; a[1] = 0; Array[a, 100]
  • PARI
    s(n) = (n+1) \ 2 * 2 - 1;
    a(n) = if(n>1, s(vecmax(factor(n)[,2])), 0);

Formula

a(n) = A051903(A350390(n)).
a(n) = A109613(A051903(n)-1) for n >= 2.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1 + 2 * Sum_{i>=1} (1 - (1/zeta(2*i+1))) = 1.42929441950714075659... .

A363334 a(n) is the sum of divisors of n that are both coreful and bi-unitary.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 14, 9, 10, 11, 12, 13, 14, 15, 26, 17, 18, 19, 20, 21, 22, 23, 42, 25, 26, 39, 28, 29, 30, 31, 62, 33, 34, 35, 36, 37, 38, 39, 70, 41, 42, 43, 44, 45, 46, 47, 78, 49, 50, 51, 52, 53, 78, 55, 98, 57, 58, 59, 60, 61, 62, 63, 118, 65, 66, 67
Offset: 1

Views

Author

Amiram Eldar, May 28 2023

Keywords

Comments

First differs from A363331 at n = 16.
The number of these divisors is A363332(n).

Examples

			a(8) = 14 since 8 has 3 divisors that are both bi-unitary and coreful, 2, 4 and 8, and 2 + 4 + 8 = 14.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(e+1) - 1)/(p - 1) - 1 - If[OddQ[e], 0, p^(e/2)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i, 1]^(f[i, 2] + 1) - 1)/(f[i, 1] - 1) - 1 - if(f[i, 2]%2, 0, f[i, 1]^(f[i, 2]/2)));}

Formula

Multiplicative with a(p^e) = (p^(e+1) - 1)/(p - 1) - 1, if e is odd, and (p^(e+1) - 1)/(p - 1) - p^(e/2) - 1 if e is even.
a(n) >= n, with equality if and only if n is cubefree (A004709).
a(n) >= A362852(n), with equality if and only if n = 1.
Sum_{k=1..n} a(k) ~ c * n^2, where c = (zeta(3)/2) * Product_{p prime} (p/(p+1))*(1+1/p-1/p^3+2/p^5) = 0.557782322450569540209... .
Dirichlet g.f.: zeta(s-1) * zeta(s) * zeta(2*s-1) * Product_{p prime} (1 - 1/p^s - 1/p^(2*s-1) + 1/p^(3*s-2) + 2/p^(3*s-1) - 2/p^(4*s-2)). - Amiram Eldar, Oct 01 2023

A363333 Numbers with a record number of divisors that are both coreful and bi-unitary.

Original entry on oeis.org

1, 8, 32, 128, 216, 864, 3456, 7776, 13824, 31104, 108000, 279936, 432000, 972000, 1728000, 3888000, 15552000, 34992000, 62208000, 97200000, 139968000, 248832000, 333396000, 559872000, 592704000, 874800000, 1333584000, 5334336000, 12002256000, 21337344000, 33339600000
Offset: 1

Views

Author

Amiram Eldar, May 28 2023

Keywords

Comments

Indices of records in A363332.
The corresponding record values are 1, 3, 5, 7, 9, 15, 21, 25, 27, 35, 45, 49, 63, 75, 81, ... (see the link for more values).

Crossrefs

Cf. A363332.
Subsequence of A025487.
Similar sequences: A005934, A293185.

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], e, e - 1]; d[1] = 1; d[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 120]
    v = Cases[Import["https://oeis.org/A025487/b025487.txt", "Table"], {, }][[;; , 2]];
    seq = {}; dm = 0; Do[If[(dk = d[v[[k]]]) > dm, dm = dk; AppendTo[seq, v[[k]]]], {k, 1, Length[v]}]; seq
Showing 1-3 of 3 results.