cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A363338 G.f. satisfies A(x) = exp( Sum_{k>=1} (-1)^(k+1) * A(x^(3*k)) * x^k/k ).

Original entry on oeis.org

1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 2, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 2, 1, 0, 1, 1, 1, 1, 0, 2, 4, 2, 1, 5, 5, 1, 2, 4, 3, 2, 2, 2, 5, 5, 1, 4, 8, 4, 1, 5, 5, 2, 2, 2, 3, 4, 2, 1, 5, 5, 2, 3, 4, 2, 1, 3, 3, 2, 2, 5, 6, 3, 5, 8, 5, 2, 5, 6, 6, 6, 4, 9, 15, 9, 6, 17, 16, 5, 9
Offset: 0

Views

Author

Seiichi Manyama, May 28 2023

Keywords

Crossrefs

Programs

  • PARI
    seq(n) = my(A=1); for(i=1, n, A=exp(sum(k=1, i, (-1)^(k+1)*subst(A, x, x^(3*k))*x^k/k)+x*O(x^n))); Vec(A);

Formula

A(x) = Sum_{k>=0} a(k) * x^k = Product_{k>=0} (1+x^(3*k+1))^a(k).
A(x) * A(w*x) * A(w^2*x) = A(x^3), where w = exp(2*Pi*i/3).
a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} ( Sum_{d|k and d==1 mod 3} (-1)^(k/d+1) * d * a(floor(d/3)) ) * a(n-k).

A363427 G.f. satisfies A(x) = exp( Sum_{k>=1} (-1)^(k+1) * A(4*x^k) * x^k/k ).

Original entry on oeis.org

1, 1, 4, 68, 4422, 1136646, 1165077220, 4773325045092, 78210934437541505, 5125710024629047469249, 1343679254641311248179226112, 1408951161809404147369817577873792, 5909570902737024213107077083032728540592
Offset: 0

Views

Author

Seiichi Manyama, Jun 01 2023

Keywords

Crossrefs

Programs

  • PARI
    seq(n) = my(A=1); for(i=1, n, A=exp(sum(k=1, i, (-1)^(k+1)*subst(A, x, 4*x^k)*x^k/k)+x*O(x^n))); Vec(A);

Formula

A(x) = Sum_{k>=0} a(k) * x^k = Product_{k>=0} (1+x^(k+1))^(4^k * a(k)).
a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} ( Sum_{d|k} (-1)^(k/d+1) * d * 4^(d-1) * a(d-1) ) * a(n-k).
Showing 1-2 of 2 results.