A363350 Number of n element multisets of length 4 vectors over GF(2) that sum to zero.
1, 1, 16, 51, 276, 969, 3504, 10659, 30954, 81719, 205040, 482885, 1088100, 2340135, 4850640, 9694845, 18789795, 35357670, 64833120, 115997970, 203014680, 347993910, 585292320, 966955410, 1571349780, 2514084066, 3964589856, 6167026726, 9470900056, 14369476066, 21554373984
Offset: 0
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (8, -20, -8, 126, -168, -196, 680, -239, -1072, 1240, 560, -1820, 560, 1240, -1072, -239, 680, -196, -168, 126, -8, -20, 8, -1).
Programs
-
Mathematica
A363350[n_]:=(Binomial[n+15,15]+If[EvenQ[n],15Binomial[n/2+7,7],0])/16;Array[A363350,50,0] (* Paolo Xausa, Nov 18 2023 *)
-
PARI
a(n) = (binomial(n+15,15) + if(n%2==0, 15*binomial(n/2+7, 7)))/16
Formula
G.f.: (1 - 7*x + 28*x^2 - 49*x^3 + 70*x^4 - 49*x^5 + 28*x^6 - 7*x^7 + x^8)/((1 - x)^16*(1 + x)^8).
a(n) = binomial(n+15, 15)/16 for odd n;
a(n) = (binomial(n+15, 15) + 15*binomial(n/2+7, 7))/16 for even n.
Comments