cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363350 Number of n element multisets of length 4 vectors over GF(2) that sum to zero.

Original entry on oeis.org

1, 1, 16, 51, 276, 969, 3504, 10659, 30954, 81719, 205040, 482885, 1088100, 2340135, 4850640, 9694845, 18789795, 35357670, 64833120, 115997970, 203014680, 347993910, 585292320, 966955410, 1571349780, 2514084066, 3964589856, 6167026726, 9470900056, 14369476066, 21554373984
Offset: 0

Views

Author

Andrew Howroyd, May 30 2023

Keywords

Comments

a(n) is the number of n X 4 binary matrices under row permutations and column complementations.
See A362905 for other interpretations.

Crossrefs

Column k=4 of A362905.
Cf. A006382.

Programs

  • Mathematica
    A363350[n_]:=(Binomial[n+15,15]+If[EvenQ[n],15Binomial[n/2+7,7],0])/16;Array[A363350,50,0] (* Paolo Xausa, Nov 18 2023 *)
  • PARI
    a(n) = (binomial(n+15,15) + if(n%2==0, 15*binomial(n/2+7, 7)))/16

Formula

G.f.: (1 - 7*x + 28*x^2 - 49*x^3 + 70*x^4 - 49*x^5 + 28*x^6 - 7*x^7 + x^8)/((1 - x)^16*(1 + x)^8).
a(n) = binomial(n+15, 15)/16 for odd n;
a(n) = (binomial(n+15, 15) + 15*binomial(n/2+7, 7))/16 for even n.