A363411 a(n) = the real part of Product_{k = 0..n} 1 + k*sqrt(-3).
1, 1, -5, -32, 112, 2212, -5348, -292880, 276976, 64180144, 60400144, -21123205376, -68151050240, 9766562233792, 57568265355328, -6044149831446272, -54001800190537472, 4827069458763086080, 59568915131392086784, -4835221290238425841664, -77896195282519949963264
Offset: 0
Examples
Type 2 prime p = 7: the sequence of 7-adic valuations [v_7(a(n)) : n = 0..60] = [0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 4, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 6, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 7, 8, 9, 8, 8, 9, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10]. Note that v_7(a(60)) = 10 = 60/(7 - 1) in agreement with the asymptotic behavior for type 2 primes conjectured above. Type 3 prime p = 5: the sequence of 5-adic valuations [v_5(a(n)) : n = 0..100] = [0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0], showing the oscillatory behavior for type 3 primes conjectured above.
Links
- Victor H. Moll, An arithmetic conjecture on a sequence of arctangent sums, 2012, see f_n.
Programs
-
Maple
a := proc(n) option remember; if n = 0 then 1 elif n = 1 then 1 else ( (2*n - 1)*a(n-1) - n*(3*n^2 - 6*n + 4)*a(n-2) )/(n - 1) end if; end: seq(a(n), n = 0..20);
-
Mathematica
Table[Re[Product[1 + k*Sqrt[-3], {k, 0, n}]], {n, 0, 20}] (* Vaclav Kotesovec, Mar 27 2025 *)
Formula
a(n) = Sum_{k = 0..floor((n+1)/2)} (-3)^k*Stirling1(n+1,n+1-2*k).
a(n+1)/a(n) = 1 - (3*n + 3)*tan(Sum_{k = 1..n} arctan(sqrt(3)*k))/sqrt(3).
P-recursive: (n - 1)*a(n) = (2*n - 1)*a(n-1) - n*(3*n^2 - 6*n + 4)*a(n-2) with
a(0) = a(1) = 1.
Conjecture: the 5-adic valuation v_5(a(n+2)) = A079998(n) (checked up to n =
5000).
Comments