A363412 a(n) = 1/sqrt(3) * the imaginary part of Product_{k = 0..n} 1 + k*sqrt(-3).
0, 1, 3, -12, -140, 420, 13692, -23744, -2366784, 126000, 641927440, 1306329024, -252172135488, -1138135788608, 135593735484480, 999117715814400, -95707279587325952, -1013737882826462976, 85873512374909086464, 1217682899871358735360, -95486742904897158097920
Offset: 0
Examples
Type 2 prime p = 7: the sequence of 7-adic valuations [v_7(a(n)) : n = 1..60] = [0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 7, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 11, 10]. Note that v_7(a(60)) = 10 = 60/(7 - 1) in agreement with the asymptotic behavior for type 2 primes conjectured above. Type 3 prime p = 5: the sequence of 5-adic valuations [v_5(a(n)) : n = 0..100] = [0, 0, 0, 1, 1, 0, 0, 0, 3, 1, 0, 0, 0, 1, 2, 0, 0, 0, 1, 1, 0, 0, 0, 2, 2, 0, 0, 0, 1, 1, 0, 0, 0, 2, 1, 0, 0, 0, 1, 2, 0, 0, 0, 1, 1, 0, 0, 0, 2, 2, 0, 0, 0, 1, 1, 0, 0, 0, 2, 1, 0, 0, 0, 1, 2, 0, 0, 0, 1, 1, 0, 0, 0, 2, 2, 0, 0, 0, 1, 1, 0, 0, 0, 2, 1, 0, 0, 0, 1, 2, 0, 0, 0, 1, 1, 0, 0, 0, 2, 2], showing the oscillatory behavior for type 3 primes conjectured above.
Links
- Victor H. Moll, An arithmetic conjecture on a sequence of arctangent sums, 2012, see f_n.
Programs
-
Maple
a := proc(n) option remember; if n = 0 then 0 elif n = 1 then 1 else ( (2*n - 1)*a(n-1) - n*(3*n^2 - 6*n + 4)*a(n-2) )/(n - 1) end if; end: seq(a(n), n = 0..20);
-
Mathematica
Table[Im[Product[1 + k*Sqrt[-3], {k, 0, n}]] / Sqrt[3], {n, 0, 20}] (* Vaclav Kotesovec, Mar 27 2025 *)
Formula
a(n) = Sum_{k = 0..floor((n+1)/2)} (-3)^k*Stirling1(n+1,n-2*k).
P-recursive: (n - 1)*a(n) = (2*n - 1)*a(n-1) - n*(3*n^2 - 6*n + 4)*a(n-2) with a(0) = 0 and a(1) = 1.
Conjectures: 3 does not divide a(3*n+1) for all n; the 3-adic valuation v_3(a(3*n)) = v_3(a(3*n-1)) for all n.
Comments