A363429 Number of set partitions of [n] such that each block has at most one even element.
1, 1, 2, 5, 10, 37, 77, 372, 799, 4736, 10427, 73013, 163967, 1322035, 3017562, 27499083, 63625324, 646147067, 1512354975, 16926317722, 40012800675, 489109544320, 1166271373797, 15455199988077, 37134022033885, 530149003318273, 1282405154139046, 19619325078384593
Offset: 0
Keywords
Examples
a(0) = 1: () the empty partition. a(1) = 1: 1. a(2) = 2: 12, 1|2. a(3) = 5: 123, 12|3, 13|2, 1|23, 1|2|3. a(4) = 10: 123|4, 12|34, 12|3|4, 134|2, 13|2|4, 14|23, 1|23|4, 14|2|3, 1|2|34, 1|2|3|4.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..772
- Wikipedia, Partition of a set
Crossrefs
Programs
-
Maple
b:= proc(n, m) option remember; `if`(n=0, 1, b(n-1, m+1)+m*b(n-1, m)) end: a:= n-> (h-> b(n-h, h))(iquo(n, 2)): seq(a(n), n=0..30);
Formula
a(n) = Sum_{k=0..ceiling(n/2)} floor(n/2)^k * binomial(ceiling(n/2),k) * Bell(ceiling(n/2)-k).