A363431 Number of 123-avoiding stabilized-interval-free permutations of size n.
1, 1, 1, 2, 5, 14, 44, 150, 496, 1758, 6018, 21782, 76414, 280448, 1001752, 3714032, 13450270, 50259604, 183995056, 691863078, 2555043320, 9657267848, 35921300392, 136360740016, 510267869416, 1944193285228, 7312488701868, 27950641500876, 105590010259396, 404724123141348, 1534775681029994
Offset: 0
Keywords
Examples
For n=4 the a(4)=5 permutations are 2413, 3142, 3412, 3421, 4312.
Links
- Daniel Birmajer, Juan B. Gil, Jordan O. Tirrell, and Michael D. Weiner, Pattern-avoiding stabilized-interval-free permutations, arXiv:2306.03155 [math.CO], 2023.
Crossrefs
Cf. A075834.
Formula
For n>2, a(n) = f_0(n) - f_1(n-1) + f_2(n) - Sum_{k=1..floor((n-3)/2)} C(k)^2*a(n-2*k), where C(k)=binomial(2*k,k)/(k+1) and f_j(m) denotes the number of 123-avoiding permutations of size m having j fixed points.
Comments