cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363432 Number of 231-avoiding stabilized-interval-free permutations of size n.

Original entry on oeis.org

1, 1, 1, 1, 2, 6, 18, 54, 170, 551, 1817, 6092, 20722, 71325, 248055, 870402, 3077861, 10959008, 39261382, 141430953, 512002865, 1861872379, 6798330676, 24915934639, 91630864177, 338048560865, 1250793108398, 4640542045919, 17260221009367, 64349394615738, 240434325753052
Offset: 0

Views

Author

Juan B. Gil, Jun 22 2023

Keywords

Comments

A stabilized-interval-free (SIF) permutation on [n] = {1, 2, ..., n} is one that does not stabilize any proper subinterval of [n].
a(n) is also the number of 312-avoiding SIF permutations of size n.

Examples

			For n=5 the a(5)=6 permutations are 51234, 51423, 53124, 54123, 54132, 54213.
		

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[1 + x/(1 + CatalanNumber[1]*x^2*(x + 1) + ContinuedFractionK[-x, 1 + CatalanNumber[k]*x^(k + 1)*(x + 1), {k, 2, nmax}]), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 23 2023 *)

Formula

G.f.: 1 + x/(1+C(1)*x^2*(x+1)-x/(1+C(2)*x^3*(x+1)-x/(1+C(3)*x^4*(x+1)-x/(...)))), where C(k)=binomial(2*k,k)/(k+1).