cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363435 Number of partitions of [2n] having exactly n blocks with all elements of the same parity.

Original entry on oeis.org

1, 0, 5, 42, 569, 9470, 191804, 4534502, 122544881, 3721101192, 125331498349, 4634063018948, 186515332107196, 8114659545679752, 379362605925991692, 18961051425453713478, 1008752282616284996865, 56905048753221935350268, 3392250956149146382053539
Offset: 0

Views

Author

Alois P. Heinz, Jun 01 2023

Keywords

Examples

			a(2) = 5: 13|24, 14|2|3, 1|2|34, 1|23|4, 12|3|4.
		

Crossrefs

Programs

  • Maple
    g:= proc(n) option remember; `if`(n=0, 1, expand(x*
          add(g(n-j)*binomial(n-1, j-1), j=1..n)))
        end:
    S:= (n, k)-> coeff(g(n), x, k):
    b:= proc(g, u) option remember;
          add(S(g, k)*S(u, k)*k!, k=0..min(g, u))
        end:
    T:= proc(n, k) option remember; local g, u; g:= floor(n/2); u:= ceil(n/2);
          add(add(add(binomial(g, i)*S(i, h)*binomial(u, j)*
          S(j, k-h)*b(g-i, u-j), j=k-h..u), i=h..g), h=0..k)
        end:
    a:= n-> T(2*n, n):
    seq(a(n), n=0..18);
  • Mathematica
    b[g_, u_] := b[g, u] = Sum[StirlingS2[g, k]*StirlingS2[u, k]*k!, {k, 0, Min[g, u]}];
    T[n_, k_] := Module[{g, u}, g = Floor[n/2]; u = Ceiling[n/2]; Sum[Sum[Sum[ Binomial[g, i]*StirlingS2[i, h]*Binomial[u, j]*StirlingS2[j, k - h]*b[g - i, u - j], {j, k - h, u}], {i, h, g}], {h, 0, k}]];
    a[n_] := T[2n, n];
    Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Oct 20 2023, after Alois P. Heinz in A124424 *)

Formula

a(n) = A124424(2n,n).
Conjecture: Limit_{n->oo} (a(n)/n!)^(1/n) = A238258 = -2 / (LambertW(-2*exp(-2)) * (2 + LambertW(-2*exp(-2)))) = 3.0882773... - Vaclav Kotesovec, Oct 21 2023