A363451 Number of partitions of [n] such that the number of blocks containing only odd elements equals the number of blocks containing only even elements.
1, 0, 2, 2, 9, 23, 99, 353, 1778, 7927, 45273, 238797, 1526331, 9215950, 65020448, 439742641, 3388075807, 25270974635, 210763775071, 1713657668021, 15359474721088, 134902169999841, 1291589459223627, 12165062702520422, 123780591852786693, 1242763745129587332
Offset: 0
Keywords
Examples
a(0) = 1: () the empty partition. a(1) = 0. a(2) = 2: 12, 1|2. a(3) = 2: 123, 13|2. a(4) = 9: 1234, 12|34, 12|3|4, 13|24, 14|23, 1|23|4, 14|2|3, 1|2|34, 1|2|3|4. a(5) = 23: 12345, 123|45, 123|4|5, 125|34, 12|345, 125|3|4, 12|35|4, 134|25, 134|2|5, 135|24, 13|25|4, 13|2|45, 13|2|4|5, 145|23, 14|235, 15|23|4, 1|235|4, 145|2|3, 14|2|35, 15|2|34, 1|2|345, 15|2|3|4, 1|2|35|4.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..250
- Wikipedia, Partition of a set
Programs
-
Maple
b:= proc(n, x, y, m) option remember; `if`(n=0, `if`(x=y, 1, 0), `if`(x+m>0, b(n-1, y, x, m)*(x+m), 0)+b(n-1, y, x+1, m)+ `if`(y>0, b(n-1, y-1, x, m+1)*y, 0)) end: a:= n-> b(n, 0$3): seq(a(n), n=0..28);
-
Mathematica
b[n_, x_, y_, m_] := b[n, x, y, m] = If[n == 0, If[x == y, 1, 0], If[x + m > 0, b[n - 1, y, x, m]*(x + m), 0] + b[n - 1, y, x + 1, m] + If[y > 0, b[n - 1, y - 1, x, m + 1]*y, 0]]; a[n_] := b[n, 0, 0, 0]; Table[a[n], {n, 0, 28}] (* Jean-François Alcover, Oct 20 2023, after Alois P. Heinz *)