A363452 Total number of blocks containing only odd elements in all partitions of [n].
0, 1, 1, 5, 12, 62, 206, 1189, 4949, 31775, 156972, 1110280, 6301550, 48637701, 310279615, 2591820857, 18293310174, 164218811718, 1267153412532, 12152174863961, 101557600812015, 1035203191874931, 9299499328238110, 100314319611860936, 962663031508255416
Offset: 0
Keywords
Examples
a(3) = 5 = 0 + 1 + 1 + 1 + 2 : 123, 12|3, 13|2, 1|23, 1|2|3.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..250
- Wikipedia, Partition of a set
Programs
-
Maple
b:= proc(n, k) local g, u; g:= floor(n/2); u:=ceil(n/2); add(Stirling2(i, k)*binomial(u, i)* add(Stirling2(g, j)*j^(u-i), j=0..g), i=k..u) end: a:= n-> add(b(n, k)*k, k=0..ceil(n/2)): seq(a(n), n=0..25); # second Maple program: b:= proc(n, x, y, m) option remember; `if`(n=0, y, `if`(x+m>0, b(n-1, y, x, m)*(x+m), 0)+b(n-1, y, x+1, m)+ `if`(y>0, b(n-1, y-1, x, m+1)*y, 0)) end: a:= n-> b(n, 0$3): seq(a(n), n=0..25);
-
Mathematica
b[n_, x_, y_, m_] := b[n, x, y, m] = If[n == 0, y, If[x + m > 0, b[n-1, y, x, m]*(x+m), 0] + b[n-1, y, x+1, m] + If[y > 0, b[n-1, y-1, x, m+1]*y, 0]]; a[n_] := b[n, 0, 0, 0]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Dec 08 2023, after Alois P. Heinz *)