A363473 Triangle read by rows: T(n, k) = k * prime(n - k + A061395(k)) for 1 < k <= n, and T(n, 1) = A008578(n).
1, 2, 4, 3, 6, 9, 5, 10, 15, 8, 7, 14, 21, 12, 25, 11, 22, 33, 20, 35, 18, 13, 26, 39, 28, 55, 30, 49, 17, 34, 51, 44, 65, 42, 77, 16, 19, 38, 57, 52, 85, 66, 91, 24, 27, 23, 46, 69, 68, 95, 78, 119, 40, 45, 50, 29, 58, 87, 76, 115, 102, 133, 56, 63, 70, 121, 31, 62, 93, 92, 145, 114, 161, 88, 99, 110, 143, 36
Offset: 1
Examples
Triangle begins: n\k : 1 2 3 4 5 6 7 8 9 10 11 12 13 ===================================================================== 1 : 1 2 : 2 4 3 : 3 6 9 4 : 5 10 15 8 5 : 7 14 21 12 25 6 : 11 22 33 20 35 18 7 : 13 26 39 28 55 30 49 8 : 17 34 51 44 65 42 77 16 9 : 19 38 57 52 85 66 91 24 27 10 : 23 46 69 68 95 78 119 40 45 50 11 : 29 58 87 76 115 102 133 56 63 70 121 12 : 31 62 93 92 145 114 161 88 99 110 143 36 13 : 37 74 111 116 155 138 203 104 117 130 187 60 169 etc.
Crossrefs
Programs
-
PARI
T(n, k) = { if(k==1, if(n==1, 1, prime(n-1)), i=floor((k+1)/2); while(k % prime(i) != 0, i=i-1); k*prime(n-k+i)) }
-
SageMath
def prime(n): return sloane.A000040(n) def A061395(n): return prime_pi(factor(n)[-1][0]) if n > 1 else 0 def T(n, k): if k == 1: return prime(n - 1) if n > 1 else 1 return k * prime(n - k + A061395(k)) for n in range(1, 11): print([T(n,k) for k in range(1, n+1)]) # Peter Luschny, Jan 07 2024
Comments