cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A363480 G.f. satisfies A(x) = exp( Sum_{k>=1} A(2*x^k)^2 * x^k/k ).

Original entry on oeis.org

1, 1, 5, 49, 923, 32603, 2198413, 288677317, 74816592016, 38536646525164, 39578607089767640, 81176446754286348780, 332742981886258629407221, 2726830211640382050679262877, 44684572695377447660556579448947
Offset: 0

Views

Author

Seiichi Manyama, Jun 04 2023

Keywords

Crossrefs

Programs

  • PARI
    seq(n) = my(A=1); for(i=1, n, A=exp(sum(k=1, i, subst(A, x, 2*x^k)^2*x^k/k)+x*O(x^n))); Vec(A);

Formula

G.f.: sqrt(B(x)) where B(x) is the g.f. of A363481.
Showing 1-1 of 1 results.