A363493 Number T(n,k) of partitions of [n] having exactly k parity changes within their blocks, n>=0, 0<=k<=max(0,n-1), read by rows.
1, 1, 1, 1, 2, 2, 1, 4, 6, 4, 1, 10, 18, 17, 6, 1, 25, 61, 68, 38, 10, 1, 75, 210, 292, 202, 83, 14, 1, 225, 778, 1252, 1116, 576, 170, 22, 1, 780, 3008, 5670, 5928, 3899, 1490, 341, 30, 1, 2704, 12219, 26114, 32382, 25320, 12655, 3856, 678, 46, 1, 10556, 52268, 126073, 177666, 163695, 98282, 39230, 9418, 1319, 62, 1
Offset: 0
Examples
T(4,0) = 4: 13|24, 13|2|4, 1|24|3, 1|2|3|4. T(4,1) = 6: 124|3, 12|3|4, 134|2, 1|23|4, 14|2|3, 1|2|34. T(4,2) = 4: 123|4, 12|34, 14|23, 1|234. T(4,3) = 1: 1234. T(5,2) = 17: 1235|4, 123|4|5, 1245|3, 12|34|5, 125|3|4, 12|3|45, 1345|2, 134|25, 14|235, 14|23|5, 15|234, 1|234|5, 1|23|45, 145|2|3, 14|25|3, 1|25|34, 1|2|345. Triangle T(n,k) begins: 1; 1; 1, 1; 2, 2, 1; 4, 6, 4, 1; 10, 18, 17, 6, 1; 25, 61, 68, 38, 10, 1; 75, 210, 292, 202, 83, 14, 1; 225, 778, 1252, 1116, 576, 170, 22, 1; 780, 3008, 5670, 5928, 3899, 1490, 341, 30, 1; 2704, 12219, 26114, 32382, 25320, 12655, 3856, 678, 46, 1; ...
Links
- Alois P. Heinz, Rows n = 0..150, flattened
- Wikipedia, Partition of a set
Crossrefs
Programs
-
Maple
b:= proc(n, x, y) option remember; `if`(n=0, 1, `if`(y=0, 0, expand(b(n-1, y-1, x+1)*y*z))+ b(n-1, y, x)*x + b(n-1, y, x+1)) end: T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(n, 0$2)): seq(T(n), n=0..12);
-
Mathematica
b[n_, x_, y_] := b[n, x, y] = If[n == 0, 1, If[y == 0, 0, Expand[b[n - 1, y - 1, x + 1]*y*z]] + b[n - 1, y, x]*x + b[n - 1, y, x + 1]]; T[n_] := CoefficientList[b[n, 0, 0], z]; Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Sep 05 2023, after Alois P. Heinz *)
Formula
Sum_{k=0..max(0,n-1)} k * T(n,k) = A363496(n).