cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363493 Number T(n,k) of partitions of [n] having exactly k parity changes within their blocks, n>=0, 0<=k<=max(0,n-1), read by rows.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 4, 6, 4, 1, 10, 18, 17, 6, 1, 25, 61, 68, 38, 10, 1, 75, 210, 292, 202, 83, 14, 1, 225, 778, 1252, 1116, 576, 170, 22, 1, 780, 3008, 5670, 5928, 3899, 1490, 341, 30, 1, 2704, 12219, 26114, 32382, 25320, 12655, 3856, 678, 46, 1, 10556, 52268, 126073, 177666, 163695, 98282, 39230, 9418, 1319, 62, 1
Offset: 0

Views

Author

Alois P. Heinz, Jun 05 2023

Keywords

Examples

			T(4,0) = 4: 13|24, 13|2|4, 1|24|3, 1|2|3|4.
T(4,1) = 6: 124|3, 12|3|4, 134|2, 1|23|4, 14|2|3, 1|2|34.
T(4,2) = 4: 123|4, 12|34, 14|23, 1|234.
T(4,3) = 1: 1234.
T(5,2) = 17: 1235|4, 123|4|5, 1245|3, 12|34|5, 125|3|4, 12|3|45, 1345|2, 134|25, 14|235, 14|23|5, 15|234, 1|234|5, 1|23|45, 145|2|3, 14|25|3, 1|25|34, 1|2|345.
Triangle T(n,k) begins:
     1;
     1;
     1,     1;
     2,     2,     1;
     4,     6,     4,     1;
    10,    18,    17,     6,     1;
    25,    61,    68,    38,    10,     1;
    75,   210,   292,   202,    83,    14,    1;
   225,   778,  1252,  1116,   576,   170,   22,   1;
   780,  3008,  5670,  5928,  3899,  1490,  341,  30,  1;
  2704, 12219, 26114, 32382, 25320, 12655, 3856, 678, 46, 1;
  ...
		

Crossrefs

Columns k=0-2 give: A124419, A363511, A363588.
Row sums give A000110.
T(n+1,n) gives A000012.
T(n+2,n) gives A027383.
T(2n+1,n) gives A363495.

Programs

  • Maple
    b:= proc(n, x, y) option remember; `if`(n=0, 1,
         `if`(y=0, 0, expand(b(n-1, y-1, x+1)*y*z))+
            b(n-1, y, x)*x + b(n-1, y, x+1))
        end:
    T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(n, 0$2)):
    seq(T(n), n=0..12);
  • Mathematica
    b[n_, x_, y_] := b[n, x, y] = If[n == 0, 1,
      If[y == 0, 0, Expand[b[n - 1, y - 1, x + 1]*y*z]] +
      b[n - 1, y, x]*x + b[n - 1, y, x + 1]];
    T[n_] := CoefficientList[b[n, 0, 0], z];
    Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Sep 05 2023, after Alois P. Heinz *)

Formula

Sum_{k=0..max(0,n-1)} k * T(n,k) = A363496(n).