A363498 a(n) = Sum_{k=0..n} floor(sqrt(k))^4.
0, 1, 2, 3, 19, 35, 51, 67, 83, 164, 245, 326, 407, 488, 569, 650, 906, 1162, 1418, 1674, 1930, 2186, 2442, 2698, 2954, 3579, 4204, 4829, 5454, 6079, 6704, 7329, 7954, 8579, 9204, 9829, 11125, 12421, 13717, 15013, 16309, 17605, 18901, 20197, 21493, 22789
Offset: 0
Links
- Karl-Heinz Hofmann, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Mathematica
Table[(n + 1) #^4 - (1/30) # (# + 1)*(20 #^4 + 4 #^3 - 14 #^2 + 4 # + 1) &[Floor@ Sqrt[n]], {n, 0, 45}] (* Michael De Vlieger, Jun 10 2023 *)
-
Python
from math import isqrt def A363498(n): return (m:=isqrt(n))**4 *(n+1) - (m*(m+1)*(20*m**4+4*m**3-14*m**2+4*m+1))//30 print([A363498(n) for n in range(0,46)]) # Karl-Heinz Hofmann, Jul 15 2023
Formula
a(n) = (n+1)*m^4 - (1/30)*m*(m+1)*(20*m^4+4*m^3-14*m^2+4*m+1), where m = floor(sqrt(n)).
Comments