A363513 a(1) = 2, then a(n) is the least prime p > a(n - 1) such that p + a(n-1) and p - a(n-1) have the same number of prime factors counted with multiplicity.
2, 5, 13, 31, 61, 103, 157, 173, 181, 193, 211, 223, 239, 269, 313, 337, 353, 419, 487, 499, 577, 613, 631, 647, 677, 709, 727, 827, 857, 947, 1039, 1093, 1117, 1231, 1283, 1303, 1319, 1483, 1499, 1553, 1609, 1627, 1657, 1693, 1721, 1733, 1823, 1913, 1933, 1951, 2003, 2027, 2039, 2129, 2161, 2203
Offset: 1
Keywords
Examples
a(2) = 5 because A001222(5-2) = A001222(5+2) = 1. a(3) = 13 because A001222(13-5) = A001222(13+5) = 3.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
R:= 2: r:= 2: for i from 1 to 100 do p:= nextprime(r); while numtheory:-bigomega(r+p) <> numtheory:-bigomega(p-r) do p:= nextprime(p) od; R:= R,p; r:= p; od: R;
-
Mathematica
s = {p = 2}; Do[q = NextPrime[p]; While[PrimeOmega[p + q] != PrimeOmega[q - p], q = NextPrime[q]]; AppendTo[s, p = q], {200}]; s