A363531 Heinz numbers of integer partitions such that 3*(sum) = (reverse-weighted sum).
1, 32, 144, 216, 243, 672, 1008, 1350, 2176, 2250, 2520, 2673, 3125, 3969, 4160, 4200, 5940, 6240, 6615, 7344, 7424, 7744, 8262, 9261, 9800, 9900, 10400, 11616, 12250, 12312, 12375, 13104, 13720, 14720, 14742, 16767, 16807, 17150, 19360, 21840, 22080, 23100
Offset: 1
Keywords
Examples
The terms together with their prime indices begin: 1: {} 32: {1,1,1,1,1} 144: {1,1,1,1,2,2} 216: {1,1,1,2,2,2} 243: {2,2,2,2,2} 672: {1,1,1,1,1,2,4} 1008: {1,1,1,1,2,2,4} 1350: {1,2,2,2,3,3} 2176: {1,1,1,1,1,1,1,7} 2250: {1,2,2,3,3,3} 2520: {1,1,1,2,2,3,4} 2673: {2,2,2,2,2,5} 3125: {3,3,3,3,3} 3969: {2,2,2,2,4,4} 4160: {1,1,1,1,1,1,3,6}
Programs
-
Mathematica
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Select[Range[1000],3*Total[prix[#]]==Total[Accumulate[prix[#]]]&]
Comments