A363532 Number of integer partitions of n with weighted alternating sum 0.
1, 0, 0, 1, 0, 0, 2, 2, 0, 3, 3, 3, 5, 5, 10, 12, 7, 14, 25, 18, 22, 48, 48, 41, 67, 82, 89, 111, 140, 170, 220, 214, 264, 392, 386, 436, 623, 693, 756, 934, 1102, 1301, 1565, 1697, 2132, 2616, 2727, 3192, 4062, 4550, 5000, 6132, 7197, 8067, 9338, 10750, 12683
Offset: 0
Keywords
Examples
The a(11) = 3 through a(15) = 12 partitions (A = 10): (33221) (84) (751) (662) (A5) (44111) (6222) (5332) (4442) (8322) (222221) (7311) (6421) (5531) (9411) (621111) (532111) (43331) (722211) (51111111) (42211111) (54221) (831111) (65111) (3322221) (432221) (3333111) (443111) (4422111) (32222111) (5511111) (33311111) (22222221) (72111111) (6111111111)
Crossrefs
Programs
-
Mathematica
altwtsum[y_]:=Sum[(-1)^(k-1)*k*y[[k]],{k,1,Length[y]}]; Table[Length[Select[IntegerPartitions[n],altwtsum[#]==0&]],{n,0,30}]
Comments