cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A363519 Number T(n,k) of partitions of [n] having exactly k parity changes within the partition, n>=0, 0<=k<=max(0,n-1), read by rows.

Original entry on oeis.org

1, 1, 0, 2, 0, 1, 4, 0, 3, 4, 8, 0, 2, 18, 14, 18, 0, 7, 27, 87, 42, 40, 0, 5, 102, 162, 360, 147, 101, 0, 20, 179, 866, 931, 1456, 434, 254, 0, 15, 675, 1746, 5836, 4755, 5778, 1619, 723, 0, 67, 1321, 9087, 16416, 36031, 22893, 23052, 5044, 2064, 0, 52, 5216, 19863, 93452, 117172, 206570, 115178, 94210, 20271, 6586
Offset: 0

Views

Author

Alois P. Heinz, Jun 07 2023

Keywords

Comments

The blocks are ordered with increasing least elements.

Examples

			T(4,1) = 3: 134|2, 13|24, 13|2|4.
T(4,2) = 4: 124|3, 14|23, 14|2|3, 1|24|3.
T(4,3) = 8: 1234, 123|4, 12|34, 12|3|4, 1|234, 1|23|4, 1|2|34, 1|2|3|4.
T(5,2) = 18: 1245|3, 124|35, 124|3|5, 134|25, 134|2|5, 13|245, 13|24|5, 13|2|45, 13|2|4|5, 14|235, 14|23|5, 14|25|3, 14|2|35, 14|2|3|5, 15|24|3, 1|245|3, 1|24|35, 1|24|3|5.
T(5,4) = 18: 12345, 1234|5, 123|45, 123|4|5, 12|345, 12|34|5, 12|3|45, 12|3|4|5, 145|23, 1|2345, 1|234|5, 1|23|45, 1|23|4|5, 145|2|3, 1|2|345, 1|2|34|5, 1|2|3|45, 1|2|3|4|5.
Triangle T(n,k) begins:
  1;
  1;
  0,  2;
  0,  1,    4;
  0,  3,    4,    8;
  0,  2,   18,   14,    18;
  0,  7,   27,   87,    42,    40;
  0,  5,  102,  162,   360,   147,   101;
  0, 20,  179,  866,   931,  1456,   434,   254;
  0, 15,  675, 1746,  5836,  4755,  5778,  1619,  723;
  0, 67, 1321, 9087, 16416, 36031, 22893, 23052, 5044, 2064;
  ...
		

Crossrefs

Column k=1 gives A363550.
Row sums give A000110.
T(n,max(0,n-1)) gives A274547.

Programs

  • Maple
    b:= proc(l, i, t) option remember; expand(`if`(l=[], 1,
          add((f-> b(subsop(j=[][], l), j, `if`(f, 1-t, t))*
          `if`(f, x, 1))(l[j]=t), j=[1, $i..nops(l)])))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(
             b([ seq(irem(i, 2), i=2..n)], 1, 0)):
    seq(T(n), n=0..12);
  • Mathematica
    b[l_, i_, t_] := b[l, i, t] = Expand[If[l == {}, 1, Sum[Function[f, b[ReplacePart[l, j -> Nothing], j, If[f, 1 - t, t]]*If[f, x, 1]][l[[j]] == t], {j, Join[{1}, Range[i, Length@l]]}]]];
    T[n_] := CoefficientList[b[ Table[Mod[i, 2], {i, 2, n}], 1, 0], x];
    Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Nov 17 2023, after Alois P. Heinz *)

Formula

Sum_{k=0..max(0,n-1)} k * T(n,k) = A363549(n).
Showing 1-1 of 1 results.