cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363555 Expansion of g.f. A(x) satisfying 0 = Sum_{n>=0} (-1)^n * x^(n*(n-1)/2) * A(x)^(n*(n+1)/2) / Product_{k=2..n+2} (1 - x^k*A(x)^(k+1)).

Original entry on oeis.org

1, 1, 3, 10, 39, 163, 719, 3291, 15495, 74568, 365188, 1814220, 9120733, 46316195, 237229711, 1224150186, 6358008567, 33211790566, 174368764180, 919634519638, 4870040209108, 25885098736539, 138044748197031, 738439479552465, 3961167293262753, 21303283844252223
Offset: 0

Views

Author

Paul D. Hanna, Jul 09 2023

Keywords

Comments

Related identities:
(1) 0 = Sum_{n>=0} (-1)^n * x^(n*(n-1)/2) * C(x)^(n*(n+1)/2) / Product_{k=1..n+1} (1 - x^k*C(x)^(k+1)), where C(x) = 1 + x*C(x)^2 is the Catalan function (A000108).
(2) 1 = Sum_{n>=0} (-1)^n * x^(n*(n+1)/2) * F(x)^(n*(n+1)/2) / Product_{k=1..n+1} (1 - x^k*F(x)^k), which holds as a formal power series for all x and F(x).
(3) Sum_{n>=0} (-1)^n * x^(n*(n-1)/2) * y^(n*(n+1)/2) / Product_{k=2..n+2} (1 - x^k*y^(k+1)) = 1-y + y^3*x + (y^3 - y^4)*x^2 - y^5*x^3 + y^6*x^4.

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 10*x^3 + 39*x^4 + 163*x^5 + 719*x^6 + 3291*x^7 + 15495*x^8 + 74568*x^9 + 365188*x^10 + ...
such that A = A(x) satisfies
0 = 1/(1-x^2*A^3) - A/((1-x^2*A^3)*(1-x^3*A^4)) + x*A^3/((1-x^2*A^3)*(1-x^3*A^4)*(1-x^4*A^5)) - x^3*A^6/((1-x^2*A^3)*(1-x^3*A^4)*(1-x^4*A^5)*(1-x^5*A^6)) + x^6*A^10/((1-x^2*A^3)*(1-x^3*A^4)*(1-x^4*A^5)*(1-x^5*A^6)*(1-x^6*A^7)) -+ ...
Compare to an identity of the Catalan function C = 1 + x*C^2, where
0 = 1/(1-x*C^2) - C/((1-x*C^2)*(1-x^2*C^3)) + x*C^3/((1-x*C^2)*(1-x^2*C^3)*(1-x^3*C^4)) - x^3*C^6/((1-x*C^2)*(1-x^2*C^3)*(1-x^3*C^4)*(1-x^4*C^5)) + x^6*C^10/((1-x*C^2)*(1-x^2*C^3)*(1-x^3*C^4)*(1-x^4*C^5)*(1-x^5*C^6)) -+ ...
		

Crossrefs

Programs

  • PARI
    /* As a solution to a polynomial equation */
    {a(n) = my(A=1); for(i=1,n, A = 1 + A^3*x + (A^3 - A^4)*x^2 - A^5*x^3 + A^6*x^4 +x*O(x^n)); polcoeff(A,n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    /* By Series Reversion involving a g.f. of A082395 */
    {a(n) = my(A=1, G082395 = (1 + x - sqrt(1 - 2*x - 3*x^2 +O(x^(n+2))))/(2*x*(1-x^2)) ); A = (1/x)*serreverse( x/G082395 ); polcoeff(A,n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    /* By Definition */
    {a(n) = my(A=[1]); for(i=1,n, A=concat(A,0);
    A[#A] = polcoeff( sum(m=0,2*sqrtint(#A), (-1)^m * (x)^(m*(m-1)/2) * Ser(A)^(m*(m+1)/2) / prod(k=2,m+2, (1 - x^k*Ser(A)^(k+1) ) )),#A-1);); A[n+1]}
    for(n=0,30,print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n may be defined by the following.
(1) A(x) = 1 + A(x)^3*x + (A(x)^3 - A(x)^4)*x^2 - A(x)^5*x^3 + A(x)^6*x^4.
(2) A(x) = G(x*A(x)) where G(x) = A(x/G(x)) = (1 + x - sqrt(1 - 2*x - 3*x^2))/(2*x*(1-x^2)) is the g.f. of A082395 (with an offset of 0).
(3) 0 = Sum_{n>=0} (-1)^n * x^(n*(n-1)/2) * A(x)^(n*(n+1)/2) / Product_{k=2..n+2} (1 - x^k*A(x)^(k+1)).