cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363557 Expansion of g.f. A(x) satisfying 0 = Sum_{n>=0} (-1)^n * x^(n*(n-1)/2) * A(x)^n / Product_{k=1..n+1} (1 - x^k).

Original entry on oeis.org

1, 1, 1, 2, 4, 9, 20, 47, 112, 273, 677, 1702, 4330, 11128, 28847, 75341, 198066, 523713, 1391869, 3716098, 9962252, 26806275, 72372721, 195994320, 532266707, 1449216287, 3955193019, 10818202369, 29650108510, 81417795070, 223964216673, 617097850848, 1702943168118
Offset: 0

Views

Author

Paul D. Hanna, Jul 11 2023

Keywords

Comments

Related identities:
(1) 0 = Sum_{n>=0} (-1)^n * x^(n*(n-1)/2) * B(x)^n / Product_{k=1..n+1} (1 - x^k*B(x)), where B(x) = 1/(1-x).
(2) 1 = Sum_{n>=0} (-1)^n * x^(n*(n+1)/2) / Product_{k=1..n+1} (1 - x^k).

Examples

			G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 4*x^4 + 9*x^5 + 20*x^6 + 47*x^7 + 112*x^8 + 273*x^9 + 677*x^10 + 1702*x^11 + 4330*x^12 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=1,n, A=concat(A,0);
    A[#A] = polcoeff( sum(m=0,2*sqrtint(#A), (-1)^m * (x)^(m*(m-1)/2) * Ser(A)^m / prod(k=1,m+1, (1 - x^k +x*O(x^#A) ) )),#A-1);); A[n+1]}
    for(n=0,32,print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n may be defined by the following.
(1) 0 = Sum_{n>=0} (-1)^n * x^(n*(n-1)/2) * A(x)^n / Product_{k=1..n+1} (1 - x^k).
(2) 1/(A(x) - x) = Sum_{n>=0} (-1)^n * x^(n*(n+1)/2) * A(x)^n / Product_{k=1..n+1} (1 - x^k).