cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A363574 Expansion of g.f. A(x) satisfying theta_4(x) = Sum_{n=-oo..+oo} x^n * (2*A(x) - x^n)^(n-1) where theta_4(x) = Sum_{n=-oo..+oo} (-1)^n * x^(n^2) is a Jacobi theta function.

Original entry on oeis.org

1, 2, 11, 70, 485, 3586, 27702, 221044, 1807751, 15073208, 127658948, 1095160206, 9496825919, 83109648780, 733063257227, 6510317010502, 58166005554886, 522446273512866, 4714846241261093, 42730135199777198, 388741207648594732, 3548875263271057666, 32500492203726887011
Offset: 0

Views

Author

Paul D. Hanna, Jun 10 2023

Keywords

Comments

Related identity: 0 = Sum_{n=-oo..+oo} x^n * (y - x^n)^n, which holds formally for all y.
Conjectures:
(1) [x^n/n] log(A(x)) == 0 (mod 2) for n >= 1,
(2) [x^n/n] log(A(x)) == 2 (mod 4) iff n is a square or twice a square (A028982).

Examples

			G.f.: A(x) = 1 + 2*x + 11*x^2 + 70*x^3 + 485*x^4 + 3586*x^5 + 27702*x^6 + 221044*x^7 + 1807751*x^8 + 15073208*x^9 + 127658948*x^10 + ...
By definition, theta_4(x) = P(x) + Q(x) where
theta_4(x) = 1 - 2*x + 2*x^4 - 2*x^9 + 2*x^16 - 2*x^25 + 2*x^36 - 2*x^49 + ...
P(x) = x + x^2*(2*A(x) - x^2) + x^3*(2*A(x) - x^3)^2 + x^4*(2*A(x) - x^4)^3 + x^5*(2*A(x) - x^5)^4 + x^6*(2*A(x) - x^6)^5 + ... + x^n*(2*A(x) - x^n)^(n-1) + ...
Q(x) = 1/(2*A(x) - 1) + x/(1 - 2*A(x)*x)^2 - x^4/(1 - 2*A(x)*x^2)^3 + x^9/(1 - 2*A(x)*x^3)^4 - x^16/(1 - 2*A(x)*x^4)^5 + ... + (-1)^(n+1)*x^(n^2)/(1 - 2*A(x)*x^n)^(n+1) + ...
Explicitly,
P(x) = x + 2*x^2 + 8*x^3 + 45*x^4 + 308*x^5 + 2222*x^6 + 16920*x^7 + 133428*x^8 + 1081337*x^9 + 8950618*x^10 + ...
Q(x) = 1 - 3*x - 2*x^2 - 8*x^3 - 43*x^4 - 308*x^5 - 2222*x^6 - 16920*x^7 - 133428*x^8 - 1081339*x^9 + ...
RELATED SERIES.
It appears that the coefficients of log(A(x)) are all even:
log(A(x)) = 2*x + 18*x^2/2 + 152*x^3/3 + 1298*x^4/4 + 11432*x^5/5 + 102528*x^6/6 + 931968*x^7/7 + 8554698*x^8/8 + 79116722*x^9/9 + ... + A363568(n)*x^n/n + ...
SPECIFIC VALUES.
A(1/10) = 2.265719721251888941080447803329772146410479668...
A(-exp(-Pi)) = 0.92975039129846529364480115642201528102246496...
A(-exp(-2*Pi)) = 0.99630302525172375553562043431958560512563348...
A(exp(-Pi)) = 1.11512759518076350005641735660471754886478511...
where related values are
theta_4(-exp(-Pi)) = Pi^(1/4)/gamma(3/4),
theta_4(exp(-Pi)) = Pi^(1/4)/(gamma(3/4)*2^(1/4)).
For example, we have
Sum_{n=-oo..+oo} exp(-n*Pi) * (2*A(exp(-Pi)) - exp(-n*Pi))^(n-1) = Pi^(1/4)/(gamma(3/4)*2^(1/4)) = 0.91357913815611682...
also,
Sum_{n=-oo..+oo} (-1)^(n+1) * exp(-n^2*Pi) / (1 - 2*A(exp(-Pi))*exp(-n*Pi))^(n+1) = Pi^(1/4)/(gamma(3/4)*2^(1/4)).
		

Crossrefs

Cf. A363568 (log(A(x))), A357227, A002448 (theta_4), A028982.

Programs

  • PARI
    {theta_4(m) = sum(n=-sqrtint(m+1),sqrtint(m+1), (-1)^n * x^(n^2) + x*O(x^m))}
    {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0);
    A[#A] = polcoeff(-theta_4(#A) + sum(m=-#A, #A, x^m * (2*Ser(A) - x^m)^(m-1) ), #A-1)/2); A[n+1]}
    for(n=0, 30, print1(a(n), ", "))

Formula

Generating function A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas; here theta_4(x) = Sum_{n=-oo..+oo} (-1)^n * x^(n^2).
(1) theta_4(x) = Sum_{n=-oo..+oo} x^n * (2*A(x) - x^n)^(n-1).
(2) theta_4(x) = Sum_{n=-oo..+oo} (-1)^(n+1) * x^(n^2) / (1 - 2*A(x)*x^n)^(n+1).
(3) 2*A(x)*theta_4(x) = Sum_{n=-oo..+oo} x^(2*n) * (2*A(x) - x^n)^(n-1).
(4) 2*A(x)*theta_4(x) = Sum_{n=-oo..+oo} (-1)^(n+1) * x^(n*(n-1)) / (1 - 2*A(x)*x^n)^(n+1).
(5) 0 = Sum_{n=-oo..+oo} x^n * (2*A(x) - x^n)^n.
(6) 0 = Sum_{n=-oo..+oo} (-1)^(n+1) * x^(n*(n-1)) / (1 - 2*x^n*A(x))^n.
a(n) ~ c * d^n / n^(3/2), where d = 9.7945249252767370556269070948885577825904333080336078... and c = 0.5596294216531106654141949766112236966734018523053... - Vaclav Kotesovec, Nov 18 2023
Showing 1-1 of 1 results.