A363587 Number of partitions of [n] such that in the set of smallest block elements there is an equal number of odd and even terms.
1, 0, 1, 2, 6, 16, 63, 246, 1201, 5632, 30776, 166800, 1032537, 6404960, 44200745, 305485130, 2305218366, 17475547664, 143075155975, 1179769331662, 10409877747841, 92570178170528, 873953428860952, 8318955989166944, 83562716138732321, 846729015766650672
Offset: 0
Keywords
Examples
a(0) = 1: () the empty partition. a(1) = 0. a(2) = 1: 1|2. a(3) = 2: 13|2, 1|23. a(4) = 6: 123|4, 134|2, 13|24, 14|23, 1|234, 1|2|3|4. a(5) = 16: 1235|4, 123|45, 1345|2, 134|25, 135|24, 13|245, 13|2|4|5, 145|23, 14|235, 15|234, 1|2345, 1|23|4|5, 15|2|3|4, 1|25|3|4, 1|2|35|4, 1|2|3|45.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..576
- Wikipedia, Partition of a set
Programs
-
Maple
b:= proc(n, x, y) option remember; `if`(abs(x-y)>2*n, 0, `if`(n=0, 1, `if`(y=0, 0, b(n-1, y-1, x+1)*y)+ b(n-1, y, x)*x + b(n-1, y, x+1))) end: a:= n-> b(n, 0$2): seq(a(n), n=0..30);
-
Mathematica
b[n_, x_, y_] := b[n, x, y] = If[Abs[x - y] > 2n, 0, If[n == 0, 1, If[y == 0, 0, b[n-1, y-1, x+1]*y] + b[n-1, y, x]*x + b[n-1, y, x+1]]]; a[n_] := b[n, 0, 0]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 18 2023, after Alois P. Heinz *)