A363595 Recursive product of aliquot divisors of n.
1, 1, 1, 2, 1, 6, 1, 16, 3, 10, 1, 1728, 1, 14, 15, 2048, 1, 5832, 1, 8000, 21, 22, 1, 4586471424, 5, 26, 81, 21952, 1, 24300000, 1, 67108864, 33, 34, 35, 101559956668416, 1, 38, 39, 163840000000, 1, 130691232, 1, 85184, 91125, 46, 1, 16543163447903718821855232, 7, 125000, 51, 140608, 1, 1338925209984
Offset: 1
Examples
Define S(n) to be the set of proper divisors of n. a(2) = 1, since 2 is prime, S(2) = {1} and the product of S(2) is 1. a(4) = 2, since S(4) = {1, 2}; S(2) = 1, hence we have (1 X 2) X 1 = 2. a(6) = 6, since S(6) = {1, 2, 3}; 2 and 3 are primes p and both have S(p) = 1, hence we have (1 X 2 X 3) X 1 X 1 = 6. a(8) = 16, since S(8) = {1, 2, 4}; a(2) = 1, a(4) = 2, therefore (1 X 2 X 4) X 1 X 2 = 16. a(9) = 3, since S(9) = {1, 3}, a(3) = 1, therefore (1 X 3) X 1 = 3. a(10) = 10, since S(10) = {1, 2, 5}; a(2) = a(5) = 1, a(4) = 2, therefore (1 X 2 X 5) X 1 X 1 = 10. a(12) = 1728, since S(12) = {1, 2, 3, 4, 6}; a(2) = a(3) = 1, a(4) = 2, a(6) = 6, therefore (1 X 2 X 3 X 4 X 6) X 1 X 1 X 2 X 6 = 144 X 12 = 1728.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..719
Programs
-
Mathematica
f[x_] := f[x] = Times @@ # * Times @@ Map[f, #] &@ Most@ Divisors[x]; Table[f[n], {n, 120}]
-
PARI
ali(n) = setminus(divisors(n), Set(n)); a(n) = my(list = List(), v = [n]); while (#v, my(w = []); for (i=1, #v, my(s=ali(v[i])); for (j=1, #s, w = concat(w, s[j]); listput(list, s[j]));); v = w;); vecprod(Vec(list)); \\ Michel Marcus, Jul 15 2023