cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363605 Expansion of Sum_{k>0} x^(2*k)/(1-x^k)^5.

Original entry on oeis.org

0, 1, 5, 16, 35, 76, 126, 226, 335, 531, 715, 1092, 1365, 1947, 2420, 3286, 3876, 5251, 5985, 7861, 8986, 11342, 12650, 16252, 17585, 21841, 24086, 29367, 31465, 38946, 40920, 49662, 53080, 62782, 66206, 80082, 82251, 97376, 102640, 120001, 123410, 146628
Offset: 1

Views

Author

Seiichi Manyama, Jun 11 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, Binomial[# + 2, 4] &]; Array[a, 40] (* Amiram Eldar, Jul 25 2023 *)
  • PARI
    my(N=50, x='x+O('x^N)); concat(0, Vec(sum(k=1, N, x^(2*k)/(1-x^k)^5)))
    
  • PARI
    a(n) = my(f = factor(n)); (sigma(f, 4) + 2*sigma(f, 3) - sigma(f, 2) - 2*sigma(f)) / 24; \\ Amiram Eldar, Dec 30 2024

Formula

G.f.: Sum_{k>0} binomial(k+2,4) * x^k/(1 - x^k).
a(n) = Sum_{d|n} binomial(d+2,4).
From Amiram Eldar, Dec 30 2024: (Start)
a(n) = (sigma_4(n) + 2*sigma_3(n) - sigma_2(n) - 2*sigma_1(n)) / 24.
Dirichlet g.f.: zeta(s) * (zeta(s-4) + 2*zeta(s-3) - zeta(s-2) - 2*zeta(s-1)) / 24.
Sum_{k=1..n} a(k) ~ (zeta(5)/120) * n^5. (End)