cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363610 Expansion of Sum_{k>0} x^(3*k)/(1-x^k)^3.

Original entry on oeis.org

0, 0, 1, 3, 6, 11, 15, 24, 29, 42, 45, 69, 66, 93, 98, 129, 120, 175, 153, 216, 206, 255, 231, 343, 282, 366, 354, 447, 378, 550, 435, 594, 542, 648, 582, 828, 630, 819, 770, 978, 780, 1114, 861, 1161, 1072, 1221, 1035, 1529, 1143, 1494, 1346, 1644, 1326, 1878, 1482, 1953
Offset: 1

Views

Author

Seiichi Manyama, Jun 11 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, Binomial[# - 1, 2] &]; Array[a, 50] (* Amiram Eldar, Jul 25 2023 *)
  • PARI
    my(N=60, x='x+O('x^N)); concat([0, 0], Vec(sum(k=1, N, x^(3*k)/(1-x^k)^3)))
    
  • PARI
    a(n) = my(f = factor(n)); (sigma(f, 2) - 3*sigma(f) + 2*numdiv(f)) / 2; \\ Amiram Eldar, Jan 01 2025

Formula

G.f.: Sum_{k>0} binomial(k-1,2) * x^k/(1 - x^k).
a(n) = Sum_{d|n} binomial(d-1,2).
From Amiram Eldar, Jan 01 2025: (Start)
a(n) = (sigma_2(n) - 3*sigma_1(n) + 2*sigma_0(n)) / 2.
Dirichlet g.f.: zeta(s) * (zeta(s-2) - 3*zeta(s-1) + 2*zeta(s)) / 2.
Sum_{k=1..n} a(k) ~ (zeta(3)/6) * n^3. (End)