A363619 Weighted alternating sum of the multiset of prime indices of n.
0, 1, 2, -1, 3, -3, 4, 2, -2, -5, 5, 5, 6, -7, -4, -2, 7, 3, 8, 8, -6, -9, 9, -6, -3, -11, 4, 11, 10, 6, 11, 3, -8, -13, -5, -3, 12, -15, -10, -10, 13, 9, 14, 14, 7, -17, 15, 8, -4, 4, -12, 17, 16, -5, -7, -14, -14, -19, 17, -7, 18, -21, 10, -3, -9, 12, 19, 20
Offset: 1
Keywords
Examples
The prime indices of 300 are {1,1,2,3,3}, with weighted alternating sum 1*1 - 2*1 + 3*2 - 4*3 + 5*3 = 8, so a(300) = 8.
Crossrefs
The reverse version is A363620.
Programs
-
Mathematica
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; altwtsum[y_]:=Sum[(-1)^(k-1)*k*y[[k]],{k,1,Length[y]}]; Table[altwtsum[prix[n]],{n,100}]
Comments