A363622 Irregular triangle read by rows where T(n,k) is the number of integer partitions of n with weighted alternating sum k (leading and trailing 0's omitted).
1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 2, 0, 0, 1, 0, 1, 1, 2, 0, 1, 1, 1, 1, 1, 3, 0, 0, 2, 0, 1, 1, 2, 1, 1, 3, 0, 2, 2, 1, 1, 2, 2, 1, 1, 5, 0, 0, 3, 0, 2, 2, 2, 1, 3, 2, 1, 1, 5, 0, 3, 3, 2, 2, 3, 2, 2, 4, 2, 1, 1, 7, 0, 0, 5, 0, 3, 3, 4, 2, 4, 2, 4, 4, 2, 1, 1
Offset: 0
Examples
Triangle begins: 1 1 1 0 0 1 1 0 1 1 2 0 0 1 0 1 1 2 0 1 1 1 1 1 3 0 0 2 0 1 1 2 1 1 3 0 2 2 1 1 2 2 1 1 5 0 0 3 0 2 2 2 1 3 2 1 1 5 0 3 3 2 2 3 2 2 4 2 1 1 7 0 0 5 0 3 3 4 2 4 2 4 4 2 1 1 7 0 5 5 3 3 5 4 3 5 3 5 4 2 1 1 Row n = 6 counts the following partitions: k=-3 k=0 k=2 k=3 k=4 k=5 k=6 ----------------------------------------------------------- (33) . . (42) . (321) (51) (222) (411) (6) (2211) (3111) (21111) (111111)
Crossrefs
Programs
-
Mathematica
altwtsum[y_]:=Sum[(-1)^(k-1)*k*y[[k]],{k,1,Length[y]}]; Table[Length[Select[IntegerPartitions[n],altwtsum[#]==k&]],{n,0,15},{k,Min[altwtsum/@IntegerPartitions[n]], Max[altwtsum/@IntegerPartitions[n]]}]
Comments