cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A363630 Expansion of Sum_{k>0} (1/(1+x^k)^3 - 1).

Original entry on oeis.org

-3, 3, -13, 18, -24, 21, -39, 63, -68, 48, -81, 127, -108, 87, -170, 216, -174, 156, -213, 294, -302, 201, -303, 497, -375, 276, -474, 537, -468, 426, -531, 777, -686, 462, -726, 965, -744, 573, -938, 1200, -906, 798, -993, 1251, -1306, 831, -1179, 1875, -1314, 1023, -1562, 1722, -1488, 1290, -1698
Offset: 1

Views

Author

Seiichi Manyama, Jun 12 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, (-1)^#*Binomial[# + 2, 2] &]; Array[a, 50] (* Amiram Eldar, Jul 18 2023 *)
  • PARI
    a(n) = sumdiv(n, d, (-1)^d*binomial(d+2, 2));

Formula

G.f.: Sum_{k>0} binomial(k+2,2) * (-x)^k/(1 - x^k).
a(n) = Sum_{d|n} (-1)^d * binomial(d+2,2).
a(n) = -(A321543(n) + 3*A002129(n) + 2*A048272(n)) / 2. - Amiram Eldar, Jan 04 2025

A363631 Expansion of Sum_{k>0} (1/(1+x^k)^4 - 1).

Original entry on oeis.org

-4, 6, -24, 41, -60, 70, -124, 206, -244, 236, -368, 560, -564, 566, -896, 1175, -1144, 1180, -1544, 2042, -2168, 1942, -2604, 3650, -3336, 3100, -4304, 5096, -4964, 4940, -5988, 7720, -7528, 6636, -8616, 10809, -9884, 9126, -12064, 14548, -13248, 12796, -15184, 18192, -18412, 15830
Offset: 1

Views

Author

Seiichi Manyama, Jun 12 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, (-1)^#*Binomial[# + 3, 3] &]; Array[a, 50] (* Amiram Eldar, Jul 18 2023 *)
  • PARI
    a(n) = sumdiv(n, d, (-1)^d*binomial(d+3, 3));

Formula

G.f.: Sum_{k>0} binomial(k+3,3) * (-x)^k/(1 - x^k).
a(n) = Sum_{d|n} (-1)^d * binomial(d+3,3).
Showing 1-2 of 2 results.