cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A363692 Terms of A363690 with a record number of divisors.

Original entry on oeis.org

3, 6, 12, 24, 36, 48, 72, 144, 168, 288, 336, 420, 840, 1680, 3360, 6720, 7560, 15120, 30240, 60480, 95760, 120960, 176400, 191520, 257040, 352800, 383040, 514080, 1028160, 1681680, 2056320, 2998800, 3112200, 5525520, 5997600, 6224400, 8353800, 12448800, 16216200
Offset: 1

Views

Author

Amiram Eldar, Jun 16 2023

Keywords

Comments

The corresponding record values are 2, 4, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 32, 40, 48, ... .

Crossrefs

Programs

  • Mathematica
    seq[kmax_] := Module[{s = {}, dm = 0, d1}, Do[d1 = DivisorSigma[0, k]; If[d1 > dm && DivisorSum[k, Boole[BitOr[#, k] == k] &] == 2, dm = d1; AppendTo[s, k]], {k, 1, kmax}]; s]; seq[10^5]
  • PARI
    lista(kmax) = {my(dm = 0, d1); for(k = 1, kmax, d1 = numdiv(k); if(d1 > dm && sumdiv(k, d, bitor(d, k) == k) == 2, dm = d1; print1(k, ", "))); }

Formula

a(n) <= 2*a(n-1) for n >= 2. - David A. Corneth, Jun 18 2023

A363691 Odd numbers k such that A246600(k) = 2.

Original entry on oeis.org

3, 5, 7, 9, 11, 13, 17, 19, 21, 23, 25, 29, 31, 33, 35, 37, 41, 43, 47, 49, 53, 57, 59, 61, 65, 67, 69, 71, 73, 77, 79, 81, 83, 89, 91, 93, 97, 101, 103, 105, 107, 109, 113, 115, 117, 121, 127, 129, 131, 133, 137, 139, 141, 145, 149, 151, 155, 157, 161, 163, 167
Offset: 1

Views

Author

Amiram Eldar, Jun 16 2023

Keywords

Comments

Odd numbers k that have exactly 2 divisors d such that the bitwise AND of k and d is equal to d, or equivalently, the bitwise OR of k and d is equal to k. These two divisors are 1 and k.
The terms of this sequence are the primitive terms of A363690: If m is a term, then 2^k*m is a term of A363690 for all k >= 0.
Includes all the odd primes (A065091), and all the squares of odd primes (A001248 \ {4}).

Crossrefs

Programs

  • Mathematica
    q[n_] := DivisorSum[n, Boole[BitOr[#, n] == n] &] == 2; Select[Range[1, 200, 2], q]
  • PARI
    is(n) = n % 2 && sumdiv(n, d, bitor(d, n) == n) == 2;
    
  • Python
    from itertools import count, islice
    from sympy import divisors
    def A363691_gen(startvalue=3): # generator of terms >= startvalue
        return filter(lambda n:all(d==1 or d==n or n|d!=n for d in divisors(n,generator=True)),count(max(startvalue,3)|1,2))
    A363691_list = list(islice(A363691_gen(),20)) # Chai Wah Wu, Jun 20 2023
Showing 1-2 of 2 results.