A363699 Radicands of pure cubic number fields of type BETA and subtype M0.
2, 455, 833, 850, 1078, 1235, 1430, 1573, 3857, 4901, 6061, 6358, 6370, 8294, 8959, 9922, 11284, 12121, 12673, 12818, 14801, 17986, 18241, 20539, 21607, 22747, 23218, 26474, 27115, 29716, 30073, 31046, 32062, 32269, 33337, 36518, 37570, 38399, 38657, 38686, 39146, 40223, 41990, 42143
Offset: 1
Keywords
Examples
Daniel Constantin Mayer discovered that two radicands of M0-fields, 1430 and 12673, both of Dedekind species II, D == 1,8 (mod 9), and three further radicands of M0-fields, 6370, 9922, 11284, all of Dedekind species IB, D == 2,4,5,7 (mod 9), are missing from the table by H. C. Williams, Math. Comp., Section 6, Table 2, p. 273.
References
- S. Aouissi, A. Azizi, M. C. Ismaili, D. C. Mayer, M. Talbi, Principal factors and lattice minima in cubic fields, Kyushu J. Math. 76 (2022), No. 1, 101-118.
- Daniel Constantin Mayer, Table of pure cubic number fields with normalized radicands between 0 and 110000, Karl-Franzens-Universität, Graz, April 1989.
- Daniel Constantin Mayer, The algorithm of Voronoi for orders in simply real cubic number fields, Karl-Franzens-Universität, Graz, March 1989.
- Daniel Constantin Mayer, Differential principal factors and units in pure cubic number fields, Karl-Franzens-Universität, Graz, August 1988.
- G. F. Voronoi, Ob odnom obobshchenii algorithma nepreryvnykh drobei (On a generalization of the algorithm of continued fractions). Doctoral Dissertation, Warsaw, 1896 (in Russian).
Links
- Daniel Constantin Mayer, Table of n, a(n) for n = 1..92
- S. Aouissi et al., 3-rank of ambiguous class groups of cubic Kummer extensions, Period. Math. Hungar., 81(2020), 250-274.
- Daniel Constantin Mayer, Detailed comments and examples
- Daniel Constantin Mayer, Magma program
- Daniel Constantin Mayer, Fast Voronoi Algorithm (Magma)
- H. C. Williams, Determination of principal factors in Q(D^1/2) and Q(D^1/3), Math. Comp. 38 (1982), No. 157, 261-274.
Crossrefs
Cf. A363717.
Comments