A363717 Prime radicands p == 1 (mod 9) of pure cubic number fields of type Gamma.
541, 919, 1279, 1531, 2161, 2269, 3637, 6211, 6427, 7129, 7723, 7867, 7993, 8389, 8461, 9649, 9901, 10009, 11071, 13627, 15031, 15391, 15607, 15661, 15787, 16741, 17713, 17911, 17929
Offset: 1
Examples
The initial term 541 is the 16th term of the sequence of primes p == 1 (mod 9). The closely related conductors c = 3*2*541 = 3246 and c = 3*5*541 = 8115, resp. c = 9*541 = 4869, give rise to rare capitulation types d.23, (1320), resp. a.2, (1000), which cannot occur for type Alpha, according to Ismaili and El Mesaoudi.
Links
- S. Aouissi, D. C. Mayer, M. C. Ismaili, M. Talbi, and A. Azizi, 3-rank of ambiguous class groups of cubic Kummer extensions, Period. Math. Hungar. (2020) Vol. 81, 250-274.
- Siham Aouissi and Daniel C. Mayer, Disproof of claims about pure cubic fields, arXiv:2501.01361 [math.NT], 2025. See pp. 10, 15.
- M. C. Ismaili and R. El Mesaoudi, Sur la capitulation des 3-classes d'idéaux de la clôture normale de certains corps cubiques purs, Ann. Sci. Math. Québec, 29(2005), no. 1, 49-72.
Programs
-
Magma
p:=1; while (p lt 10^5) do p:=NextPrime(p); if (1 eq p mod 9) then ZX
:=PolynomialRing(Integers()); L:=NumberField(X^3-p); K:=NumberField(X^2+X+1); N:=Compositum(L,K); SetClassGroupBounds("GRH"); CL:=ClassGroup(L); VL:=Valuation(#CL,3); CN:=ClassGroup(N); VN:=Valuation(#CN,3); E:=VN-2*VL+1; if (1 eq E) then printf "%o, ",p; end if; end if; end while;
Comments