A363721 Number of odd-length integer partitions of n satisfying (mean) = (median) = (mode), assuming there is a unique mode.
1, 1, 2, 1, 2, 2, 2, 1, 3, 3, 2, 2, 2, 5, 7, 1, 2, 8, 2, 9, 16, 11, 2, 2, 15, 16, 37, 33, 2, 44, 2, 1, 79, 33, 103, 127, 2, 47, 166, 39, 2, 214, 2, 384, 738, 90, 2, 2, 277, 185, 631, 1077, 2, 1065, 1560, 477, 1156, 223, 2, 2863
Offset: 1
Keywords
Examples
The a(n) partitions for n = {1, 3, 9, 14, 15, 18, 20, 22} (A..M = 10..22): 1 3 9 E F I K M 111 333 2222222 555 666 44444 22222222222 111111111 3222221 33333 222222222 54443 32222222221 3322211 43332 322222221 64442 33222222211 4222211 53331 332222211 65441 33322222111 63321 422222211 74432 42222222211 111111111111111 432222111 74441 43222222111 522222111 84431 44222221111 94421 52222222111 53222221111 62222221111
Crossrefs
Programs
-
Mathematica
modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&]; Table[Length[Select[IntegerPartitions[n],OddQ[Length[#]]&&{Mean[#]}=={Median[#]}==modes[#]&]],{n,30}]
Comments