A363725 Number of integer partitions of n with a different mean, median, and mode, assuming there is a unique mode.
0, 0, 0, 0, 0, 0, 0, 1, 1, 3, 3, 8, 8, 17, 19, 28, 39, 59, 68, 106, 123, 165, 220, 301, 361, 477, 605, 745, 929, 1245, 1456, 1932, 2328, 2846, 3590, 4292, 5111, 6665, 8040, 9607, 11532, 14410, 16699, 20894, 24287, 28706, 35745, 42845, 49548, 59963, 70985
Offset: 0
Keywords
Examples
The a(7) = 1 through a(13) = 17 partitions: (3211) (4211) (3321) (5311) (4322) (4431) (4432) (4311) (6211) (4421) (5322) (5422) (5211) (322111) (5411) (6411) (5521) (6311) (7311) (6322) (7211) (8211) (6511) (43211) (53211) (7411) (332111) (432111) (8311) (422111) (522111) (9211) (54211) (63211) (333211) (433111) (442111) (532111) (622111) (3322111) (32221111)
Programs
-
Mathematica
modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&]; Table[Length[Select[IntegerPartitions[n], Length[modes[#]]==1&&Mean[#]!=Median[#]!=First[modes[#]]&]],{n,0,30}]
Comments