A363732 Triangle read by rows. The triangle algorithm applied to (-1)^n/n!.
1, -2, 1, 5, -4, 1, -15, 15, -6, 1, 52, -60, 30, -8, 1, -203, 260, -150, 50, -10, 1, 877, -1218, 780, -300, 75, -12, 1, -4140, 6139, -4263, 1820, -525, 105, -14, 1, 21147, -33120, 24556, -11368, 3640, -840, 140, -16, 1, -115975, 190323, -149040, 73668, -25578, 6552, -1260, 180, -18, 1
Offset: 0
Examples
The triangle T(n, k) starts: [0] 1; [1] -2, 1; [2] 5, -4, 1; [3] -15, 15, -6, 1; [4] 52, -60, 30, -8, 1; [5] -203, 260, -150, 50, -10, 1; [6] 877, -1218, 780, -300, 75, -12, 1; [7] -4140, 6139, -4263, 1820, -525, 105, -14, 1; [8] 21147, -33120, 24556, -11368, 3640, -840, 140, -16, 1;
Links
- Peter Luschny, Table of n, a(n) for row 0..100.
- Kwang-Wu Chen, Algorithms for Bernoulli numbers and Euler numbers, J. Integer Sequences, 4 (2001), #01.1.6.
- Masanobu Kaneko, The Akiyama-Tanigawa algorithm for Bernoulli numbers, J. Integer Sequences, 3 (2000), #00.2.9.
- Naho Kawasaki and Yasuo Ohno, The triangle algorithm for Bernoulli polynomials, Integers, vol. 23 (2023). (See figure 4.)
- D. Merlini, R. Sprugnoli, and M. C. Verri, The Akiyama-Tanigawa Transformation, Integers, 5 (1) (2005) #A05.
Crossrefs
Programs
-
Maple
TA := proc(a, n, m, x) option remember; if n = 0 then a(m) else normal((m + 1)*TA(a, n - 1, m + 1, x) - (m + 1 - x)*TA(a, n - 1, m, x)) fi end: seq(seq(coeff(TA(n -> (-1)^n/n!, n, 0, x), x, k), k = 0..n), n = 0..10);
-
Mathematica
(* rows[0..n], n[0..oo] *) (* row[n]= *) n=9;r={};For[a=n+1,a>0,a--,AppendTo[r,(-1)^(a+1)*Sum[StirlingS2[a,k],{k,0,a}]*Product[(2*(a+j))/(2*j+2),{j,0,n-a}]]];r (* columns[1..n], n[0..oo] *) (* column[n]= *) n=0;c={};For[a=1,a<15,a++,AppendTo[c,(-1)^(a+1)*Sum[StirlingS2[a,k],{k,0,a}]*Product[(2*(a+j-1))/(2*j),{j,1,n}]]];c (* sequence *) s={};For[n=0,n<15,n++,For[a=n+1,a>0,a--,AppendTo[s,(-1)^(a+1)*Sum[StirlingS2[a,k],{k,0,a}]*Product[(2*(a+j))/(2*j+2),{j,0,n-a}]]]];s (* Detlef Meya, Jun 22 2023 *)
-
SageMath
def a(n): return (-1)^n / factorial(n) @cached_function def p(n, m): R = PolynomialRing(QQ, "x") if n == 0: return R(a(m)) return R((m + 1)*p(n - 1, m + 1) - (m + 1 - x)*p(n - 1, m)) for n in range(10): print(p(n, 0).list())
Comments