cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363734 a(n) = Sum_{k=0..n} n^divides(k, n), where divides(k, n) = 1 if k divides n, otherwise 0.

Original entry on oeis.org

0, 2, 5, 8, 14, 14, 27, 20, 37, 34, 47, 32, 79, 38, 67, 72, 92, 50, 121, 56, 135, 102, 107, 68, 209, 98, 127, 132, 191, 86, 263, 92, 219, 162, 167, 172, 352, 110, 187, 192, 353, 122, 371, 128, 303, 310, 227, 140, 519, 194, 345, 252, 359, 158, 479, 272, 497
Offset: 0

Views

Author

Peter Luschny, Jun 27 2023

Keywords

Crossrefs

Programs

  • Mathematica
    A363734[n_]:=If[n==0,0,n+1+(n-1)DivisorSigma[0,n]];Array[A363734,100,0] (* Paolo Xausa, Aug 06 2023 *)
  • Python
    from sympy import divisor_count
    def A363734(n): return (n-1)*divisor_count(n)+n+1 if n else 0 # Chai Wah Wu, Jun 28 2023
  • SageMath
    print([sum(n^k.divides(n) for k in srange(n+1)) for n in srange(57)])
    

Formula

a(n) = (n - 1) * tau(n) + n + 1 for n >= 1, where tau = A000005.
a(n) + A363735(n) = (n + 1)^2.
A363735(n) - a(n) = A363421(n).