A363740 Number of integer partitions of n whose median appears more times than any other part, i.e., partitions containing a unique mode equal to the median.
1, 2, 2, 4, 5, 7, 10, 15, 18, 26, 35, 46, 61, 82, 102, 136, 174, 224, 283, 360, 449, 569, 708, 883, 1089, 1352, 1659, 2042, 2492, 3039, 3695, 4492, 5426, 6555, 7889, 9482, 11360, 13602, 16231, 19348, 23005, 27313, 32364, 38303, 45227, 53341, 62800, 73829
Offset: 1
Keywords
Examples
The a(1) = 1 through a(8) = 15 partitions: (1) (2) (3) (4) (5) (6) (7) (8) (11) (111) (22) (221) (33) (322) (44) (211) (311) (222) (331) (332) (1111) (2111) (411) (511) (422) (11111) (3111) (2221) (611) (21111) (4111) (2222) (111111) (22111) (3221) (31111) (5111) (211111) (22211) (1111111) (32111) (41111) (221111) (311111) (2111111) (11111111)
Crossrefs
Programs
-
Mathematica
modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&]; Table[Length[Select[IntegerPartitions[n],{Median[#]}==modes[#]&]],{n,30}]
Comments