A363752 Primes prime(k) such that prime(k) mod k is prime.
5, 7, 17, 19, 23, 41, 47, 53, 61, 71, 79, 89, 101, 107, 113, 127, 131, 137, 139, 151, 163, 167, 173, 181, 191, 193, 197, 211, 223, 227, 229, 233, 239, 241, 257, 269, 277, 281, 313, 317, 347, 359, 367, 373, 383, 397, 421, 433, 443, 457, 463, 479, 503, 521, 541
Offset: 1
Keywords
Examples
The 9th prime is 23 and 23 mod 9 = 5, which is prime, so 23 is a term.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Table[If[PrimeQ[Mod[Prime[k], k]], Prime[k], Nothing], {k, 1, 100}]
-
Python
from sympy import prime, isprime a363752=[] for k in range(1, 101): if isprime(prime(k)%k): a363752.append(prime(k))