A363755 The original n X n X n dots problem: minimal number of straight lines (connected at their endpoints) required to join all the n^3 points belonging to the set {{0,1,...,n-1} X {0,1,...,n-1} X {0,1,...,n-1}} in R^3, without any additional constraint.
1, 6, 13
Offset: 1
Examples
For n = 2, a(2) = 6, since it is not possible to touch the 8 vertices of a cube by spending fewer than 6 straight lines (see Theorem 2.2 in Optimal cycles enclosing all the nodes of a k-dimensional hypercube).
References
- Sam Loyd, Cyclopedia of Puzzles, The Lamb Publishing Company, 1914, page 301.
Links
- Roberto Rinaldi and Marco Ripà, Optimal cycles enclosing all the nodes of a k-dimensional hypercube, arXiv:2212.11216 [math.CO], 2022.
- Marco Ripà, Solving the n_1 x n_2 x n_3 Points Problem for any n_3 < 6, ResearchGate, 2020.
- Marco Ripà, Solving the 106 years old 3^k points problem with the clockwise-algorithm, Journal of Fundamental Mathematics and Applications, 2020, 3(2), 84-97.
- Marco Ripà, Minimum-Link Covering Trails for any Hypercubic Lattice, arXiv:2208.01699 [math.GM], 2022.
- Marco Ripà, General conjecture on the optimal covering trails in a k-dimensional cubic lattice, ResearchGate, 2022.
- Wikipedia, Nine dots puzzle
Formula
For any n >= 3, (n^3 - 1)/(n - 1) <= a(n) <= floor((3*n^2)/2) - floor((n - 1)/4) + floor((n + 1)/4) - floor((n + 2)/4) + floor(n/4) + n - 2.
Comments