A363761 a(n) is the least k < 3*n such that there are exactly n distinct numbers j that can be expressed as sum of two squares with k^2 < j < (k+1)^2, or -1 if such a k does not exist.
0, 1, 2, 4, 5, 7, 8, 10, 13, 12, 15, 17, 19, 23, 21, 24, 25, 28, 32, 31, 34, 37, 39, 44, 41, 43, 45, 50, 51, 48, 57, 55, 56, 59, 64, 63, 68, 69, 74, 77, 78, 75, 72, 80, 88, 84, -1, 94, 89, 96, 93, 99, 97, 102, 108, -1, 106, 111, 110, 113, 117, 120, -1, 123, 133, 127, 130, 137, 142, 138, 139, -1, 135
Offset: 0
Keywords
Links
- Hugo Pfoertner, Table of n, a(n) for n = 0..3000
Crossrefs
Programs
-
PARI
a363761(upto) = {for (n=0, upto, my(kfound=-1); for (k=0, 3*n, my(k1=k^2+1, k2=k*(k+2), m=0); for (j=k1, k2, m+= (sumdiv(j,d, (d%4==1)-(d%4==3))>0); if (m>n, break)); if (m==n, kfound=k; break); if (m==n, kfound=k; break)); print1(kfound,", "))}; a363761(75)
-
Python
from sympy import factorint def A363761(n): for k in range(n>>1,3*n): c = 0 for m in range(k**2+1,(k+1)**2): if all(p==2 or p&3==1 or e&1^1 for p, e in factorint(m).items()): c += 1 if c>n: break if c==n: return k return -1 # Chai Wah Wu, Jun 22 2023
Formula
If a(n) != -1, then a(n) >= n/2. - Chai Wah Wu, Jun 22 2023
a(n) = A363763(n) for n <= 11459.
a(n) = -1 for n > 15898.