A363786 a(0) = 2. For n >= 1, a(n) is the least prime p such that a(n-1) + p has n prime factors counted with multiplicity.
2, 3, 3, 5, 11, 37, 59, 229, 347, 421, 3163, 4517, 1627, 26021, 14939, 34213, 64091, 378277, 14939, 3392933, 146011, 6931877, 8796763, 37340581, 25573979, 238667173, 113654363, 1018807717, 491141723, 4743349669, 8544205403, 10246276517, 491141723
Offset: 0
Keywords
Examples
a(5) = 37 because a(4) + 37 = 48 = 2^4*3 has 5 prime factors counted with multiplicity.
Programs
-
Maple
R:= 2: t:= 2: for n from 1 to 30 do p:= 1: do p:= nextprime(p) until numtheory:-bigomega(t+p) = n; R:= R,p; t:= p; od: R;
-
Mathematica
s={2};Do[p=2;While[PrimeOmega[s[[-1]]+p]!= k,p=NextPrime[p]];Print[p];AppendTo[s,p],{k,1,50}];
Formula
A001222(a(n-1) + a(n)) = n.