A363791 Starts of runs of 3 consecutive integers that are primitive binary Niven numbers (A363787).
4184046, 5234670, 6285294, 7861230, 8123886, 8255214, 8255215, 8320878, 8353710, 8370126, 8379247, 12238830, 12451631, 12572622, 13623246, 13629935, 14515182, 14646510, 14673870, 14673871, 14679342, 15040494, 15335375, 15449071, 15531759, 15708078, 15986543, 16178670
Offset: 1
Examples
4184046 is a term since 4184046, 4184047 and 4184048 are all primitive binary Niven numbers.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
binNivQ[n_] := Divisible[n, DigitCount[n, 2, 1]]; primBinNivQ[n_] := binNivQ[n] && ! (EvenQ[n] && binNivQ[n/2]); seq[kmax_] := Module[{tri = primBinNivQ /@ Range[3], s = {}, k = 4}, While[k < kmax, If[And @@ tri, AppendTo[s, k - 3]]; tri = Join[Rest[tri], {primBinNivQ[k]}]; k++]; s]; seq[10^7]
-
PARI
isbinniv(n) = !(n % hammingweight(n)); isprim(n) = isbinniv(n) && !(!(n%2) && isbinniv(n/2)); lista(kmax) = {my(tri = vector(3, i, isprim(i)), k = 4); while(k < kmax, if(vecsum(tri) == 3, print1(k-3, ", ")); tri = concat(vecextract(tri, "^1"), isprim(k)); k++); }