A363847 Numbers k such that Omega(m*(m+1)) < Omega(k*(k+1)) for all m < k, where Omega(k) is the number of prime divisors of k counted with multiplicity (A001222).
1, 2, 3, 7, 8, 15, 32, 63, 224, 255, 512, 3968, 4095, 14336, 32768, 65535, 180224, 262143, 1048575, 14680064, 16777215, 134217728, 268435455, 1073741823, 8589934592, 12884901887, 34359738368, 68719476735, 1099511627775, 4398046511103, 17592186044415, 35184372088832
Offset: 1
Keywords
Links
- Paul Erdős and Jean-Louis Nicolas, Sur la fonction "nombre de facteurs premiers de n", Séminaire Delange-Pisot-Poitou, Théorie des nombres, Vol. 20, No. 2 (1978-1979), Talk no. 32, pp. 1-19. See p. 10.
Programs
-
Mathematica
seq[kmax_] := Module[{o1 = 0, o2, om = 0, s = {}}, Do[o2 = PrimeOmega[k]; o = o1 + o2; If[o > om, om = o; AppendTo[s, k - 1]]; o1 = o2, {k, 2, kmax}]; s]; seq[10^5]
-
PARI
lista(kmax) = {my(o1 = 0, o2, om = 0); for(k = 2, kmax, o2 = bigomega(k); o = o1 + o2; if(o > om, om = o; print1(k-1, ", ")); o1 = o2); }
Extensions
a(29)-a(32) from Martin Ehrenstein, Jul 08 2023
Comments