A363874 Decimal expansion of the harmonic mean of the isoperimetric quotient of ellipses when expressed in terms of their eccentricity.
8, 7, 8, 9, 2, 0, 6, 5, 0, 8, 2, 9, 6, 0, 4, 1, 2, 4, 6, 2, 0, 2, 9, 7, 3, 2, 0, 0, 5, 3, 0, 7, 8, 4, 1, 6, 0, 2, 4, 9, 3, 3, 6, 4, 8, 6, 4, 2, 2, 9, 7, 7, 8, 0, 2, 0, 8, 9, 5, 7, 7, 3, 5, 2, 7, 1, 5, 0, 7, 2, 5, 3, 7, 1, 5, 9, 8, 8, 1, 9, 1, 8, 1, 8, 2, 8, 4, 3, 6
Offset: 0
Examples
0.87892065082960412...
Links
- Eric Weisstein's World of Mathematics, Isoperimetric Quotient
- Wikipedia, Elliptic integral
Programs
-
Mathematica
First[RealDigits[Pi^2/(4 * NIntegrate[EllipticE[x^2]^2/Sqrt[1 - x^2], {x, 0, 1}, WorkingPrecision -> 100])]]
-
PARI
Pi^2/(4*intnum(x=0,1,(ellE(x)^2)/sqrt(1 - x^2))) \\ Hugo Pfoertner, Jun 25 2023
Formula
Equals Pi^2/(4*Integral_{x=0..1} (E(x)^2)/sqrt(1 - x^2) dx).
Comments