cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A363903 Expansion of Sum_{k>0} x^k / (1 - x^(4*k))^2.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 1, 4, 3, 1, 1, 5, 1, 3, 1, 6, 4, 1, 3, 7, 1, 1, 1, 10, 5, 4, 1, 9, 3, 1, 1, 10, 6, 3, 4, 11, 1, 5, 3, 12, 7, 1, 1, 18, 1, 1, 1, 14, 10, 6, 5, 15, 4, 3, 1, 16, 9, 1, 3, 17, 1, 10, 1, 24, 10, 1, 6, 19, 3, 1, 4, 20, 11, 10, 1, 21, 5, 1, 3, 25, 12, 1, 7, 30, 1, 9, 1, 24, 18, 5, 1, 25, 1, 3, 1
Offset: 1

Views

Author

Seiichi Manyama, Jun 27 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, # + 3 &, Mod[#, 4] == 1 &]/4; Array[a, 100] (* Amiram Eldar, Jun 27 2023 *)
  • PARI
    a(n) = sumdiv(n, d, (d%4==1)*(d+3))/4;

Formula

a(n) = (1/4) * Sum_{d|n, d==1 mod 4} (d+3) = (3 * A001826(n) + A050449(n))/4.
G.f.: Sum_{k>0} k * x^(4*k-3) / (1 - x^(4*k-3)).

A363925 Expansion of Sum_{k>0} x^k / (1 - x^(5*k))^2.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 4, 3, 1, 1, 1, 5, 1, 3, 1, 1, 6, 4, 1, 3, 1, 7, 1, 1, 1, 3, 8, 5, 4, 1, 1, 11, 1, 1, 1, 1, 10, 8, 1, 4, 1, 11, 1, 7, 1, 1, 12, 7, 1, 3, 4, 13, 1, 1, 1, 3, 14, 8, 6, 5, 1, 20, 1, 1, 1, 1, 16, 11, 1, 1, 1, 17, 4, 9, 1, 5, 18, 10, 1, 8, 1, 19, 1, 4, 1, 3, 20, 11
Offset: 1

Views

Author

Seiichi Manyama, Jun 28 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, # + 4 &, Mod[#, 5] == 1 &] / 5; Array[a, 100] (* Amiram Eldar, Jun 28 2023 *)
  • PARI
    a(n) = sumdiv(n, d, (d%5==1)*(d+4))/5;

Formula

a(n) = (1/5) * Sum_{d|n, d==1 mod 5} (d+4) = (4 * A001876(n) + A284097(n))/5.
G.f.: Sum_{k>0} k * x^(5*k-4) / (1 - x^(5*k-4)).

A363902 Expansion of Sum_{k>0} x^(2*k) / (1 - x^(3*k))^2.

Original entry on oeis.org

0, 1, 0, 1, 2, 1, 0, 4, 0, 3, 4, 1, 0, 6, 2, 4, 6, 1, 0, 10, 0, 5, 8, 4, 2, 10, 0, 6, 10, 3, 0, 15, 4, 7, 14, 1, 0, 14, 0, 13, 14, 6, 0, 20, 2, 9, 16, 4, 0, 20, 6, 10, 18, 1, 6, 28, 0, 11, 20, 10, 0, 22, 0, 15, 24, 5, 0, 30, 8, 20, 24, 4, 0, 26, 2, 14, 30, 10, 0, 40, 0, 15, 28, 6, 8
Offset: 1

Views

Author

Seiichi Manyama, Jun 27 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, # + 1 &, Mod[#, 3] == 2 &]/3; Array[a, 100] (* Amiram Eldar, Jun 27 2023 *)
  • PARI
    a(n) = sumdiv(n, d, (d%3==2)*(d+1))/3;

Formula

a(n) = (1/3) * Sum_{d|n, d==2 mod 3} (d+1) = (A001822(n) + A078182(n))/3.
G.f.: Sum_{k>0} k * x^(3*k-1) / (1 - x^(3*k-1)).

A363970 Expansion of Sum_{k>0} k^2 * x^(3*k-2) / (1 - x^(3*k-2)).

Original entry on oeis.org

1, 1, 1, 5, 1, 1, 10, 5, 1, 17, 1, 5, 26, 10, 1, 41, 1, 1, 50, 21, 10, 65, 1, 5, 82, 26, 1, 114, 1, 17, 122, 41, 1, 145, 10, 5, 170, 50, 26, 217, 1, 10, 226, 69, 1, 257, 1, 41, 299, 98, 1, 354, 1, 1, 362, 114, 50, 401, 1, 21, 442, 122, 10, 525, 26, 65, 530, 149, 1, 602, 1, 5, 626, 170
Offset: 1

Views

Author

Seiichi Manyama, Jun 30 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, ((#+2)/3)^2 &, Mod[#, 3] == 1 &]; Array[a, 100] (* Amiram Eldar, Jun 30 2023 *)
  • PARI
    a(n) = sumdiv(n, d, (d%3==1)*((d+2)/3)^2);

Formula

a(n) = Sum_{d|n, d==1 mod 3} ((d+2)/3)^2.

A363975 Expansion of Sum_{k>0} x^k / (1 - x^(3*k))^3.

Original entry on oeis.org

1, 1, 1, 4, 1, 1, 7, 4, 1, 11, 1, 4, 16, 7, 1, 25, 1, 1, 29, 14, 7, 37, 1, 4, 46, 16, 1, 65, 1, 11, 67, 25, 1, 79, 7, 4, 92, 29, 16, 119, 1, 7, 121, 40, 1, 137, 1, 25, 160, 56, 1, 190, 1, 1, 191, 65, 29, 211, 1, 14, 232, 67, 7, 278, 16, 37, 277, 82, 1, 317, 1, 4, 326, 92, 46, 383, 7, 16, 379
Offset: 1

Views

Author

Seiichi Manyama, Jun 30 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, Binomial[(#+2)/3+1,2] &, Mod[#, 3] == 1 &]; Array[a, 100] (* Amiram Eldar, Jun 30 2023 *)
  • PARI
    a(n) = sumdiv(n, d, (d%3==1)*binomial((d+2)/3+1, 2));

Formula

G.f.: Sum_{k>0} k*(k+1)/2 * x^(3*k-2) / (1 - x^(3*k-2)).
a(n) = Sum_{d|n, d==1 mod 3} binomial((d+2)/3+1,2).
Showing 1-5 of 5 results.