A363913 a(n) = Sum_{k=0..n} divides(k, n) * 3^k, where divides(k, n) = 1 if k divides n, otherwise 0.
1, 3, 12, 30, 93, 246, 768, 2190, 6654, 19713, 59304, 177150, 532290, 1594326, 4785168, 14349180, 43053375, 129140166, 387440940, 1162261470, 3486843786, 10460355420, 31381236768, 94143178830, 282430075332, 847288609689, 2541867422664, 7625597504700, 22876797240210
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Magma
A363913:= func< n | n eq 0 select 1 else 3*(&+[3^(d-1): d in Divisors(n)]) >; [A363913(n): n in [0..40]]; // G. C. Greubel, Jun 26 2024
-
Maple
divides := (k, n) -> ifelse(k = n or (k > 0 and irem(n, k) = 0), 1, 0): a := n -> local j; add(divides(j, n) * 3^j, j = 0 ..n): seq(a(n), n = 0..28);
-
Mathematica
A363913[n_]:= If[n==0, 1, 3*DivisorSum[n, 3^(#-1) &]]; Table[A363913[n], {n,0,40}] (* G. C. Greubel, Jun 26 2024 *)
-
Python
from sympy import divisors def A363913(n): return sum(3**k for k in divisors(n,generator=True)) if n else 1 # Chai Wah Wu, Jun 28 2023
-
SageMath
def a(n): return sum(3^k * k.divides(n) for k in srange(n+1)) print([a(n) for n in range(29)])
Formula
a(n) = Sum_{j=0..n} A113704(j, n) * m^j for m = 3; for other cases see the crossreferences.
a(n) = 3*A034730(n), n>=1. - R. J. Mathar, Jul 04 2023