A363923 a(n) = n^npf(n) / rad(n), where npf(n) is the number of prime factors with multiplicity of n.
1, 1, 1, 8, 1, 6, 1, 256, 27, 10, 1, 288, 1, 14, 15, 32768, 1, 972, 1, 800, 21, 22, 1, 55296, 125, 26, 6561, 1568, 1, 900, 1, 16777216, 33, 34, 35, 279936, 1, 38, 39, 256000, 1, 1764, 1, 3872, 6075, 46, 1, 42467328, 343, 12500, 51, 5408, 1, 1417176, 55, 702464
Offset: 1
Keywords
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Programs
-
Maple
with(NumberTheory): a := n -> n^NumberOfPrimeFactors(n) / Radical(n): seq(a(n), n = 1..56);
-
Mathematica
Array[#^PrimeOmega[#]/(Times @@ FactorInteger[#][[All, 1]]) &, 56] (* Michael De Vlieger, Jul 11 2023 *)
-
PARI
a(n) = my(f=factor(n)); n^bigomega(f)/factorback(f[, 1]); \\ Michel Marcus, Jul 11 2023
-
Python
from math import prod from sympy import factorint def A363923(n): return prod(n**e//p for p, e in factorint(n).items()) # Chai Wah Wu, Jul 12 2023