cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363923 a(n) = n^npf(n) / rad(n), where npf(n) is the number of prime factors with multiplicity of n.

Original entry on oeis.org

1, 1, 1, 8, 1, 6, 1, 256, 27, 10, 1, 288, 1, 14, 15, 32768, 1, 972, 1, 800, 21, 22, 1, 55296, 125, 26, 6561, 1568, 1, 900, 1, 16777216, 33, 34, 35, 279936, 1, 38, 39, 256000, 1, 1764, 1, 3872, 6075, 46, 1, 42467328, 343, 12500, 51, 5408, 1, 1417176, 55, 702464
Offset: 1

Views

Author

Peter Luschny, Jul 11 2023

Keywords

Crossrefs

Programs

  • Maple
    with(NumberTheory): a := n -> n^NumberOfPrimeFactors(n) / Radical(n):
    seq(a(n), n = 1..56);
  • Mathematica
    Array[#^PrimeOmega[#]/(Times @@ FactorInteger[#][[All, 1]]) &, 56] (* Michael De Vlieger, Jul 11 2023 *)
  • PARI
    a(n) = my(f=factor(n)); n^bigomega(f)/factorback(f[, 1]); \\ Michel Marcus, Jul 11 2023
    
  • Python
    from math import prod
    from sympy import factorint
    def A363923(n): return prod(n**e//p for p, e in factorint(n).items()) # Chai Wah Wu, Jul 12 2023

Formula

a(n) = n^A001222(n) / A007947(n).
a(n) = 1 <=> n term of A008578.