A363952 Number of integer partitions of n with low mode k.
1, 0, 1, 0, 1, 1, 0, 2, 0, 1, 0, 3, 1, 0, 1, 0, 4, 2, 0, 0, 1, 0, 7, 2, 1, 0, 0, 1, 0, 9, 3, 2, 0, 0, 0, 1, 0, 13, 5, 2, 1, 0, 0, 0, 1, 0, 18, 6, 3, 2, 0, 0, 0, 0, 1, 0, 26, 9, 3, 2, 1, 0, 0, 0, 0, 1, 0, 32, 13, 5, 3, 2, 0, 0, 0, 0, 0, 1, 0, 47, 16, 7, 3, 2, 1, 0, 0, 0, 0, 0, 1
Offset: 0
Examples
Triangle begins: 1 0 1 0 1 1 0 2 0 1 0 3 1 0 1 0 4 2 0 0 1 0 7 2 1 0 0 1 0 9 3 2 0 0 0 1 0 13 5 2 1 0 0 0 1 0 18 6 3 2 0 0 0 0 1 0 26 9 3 2 1 0 0 0 0 1 0 32 13 5 3 2 0 0 0 0 0 1 0 47 16 7 3 2 1 0 0 0 0 0 1 0 60 21 10 4 3 2 0 0 0 0 0 0 1 0 79 30 13 6 3 2 1 0 0 0 0 0 0 1 0 104 38 17 7 4 3 2 0 0 0 0 0 0 0 1 Row n = 8 counts the following partitions: . (71) (62) (53) (44) . . . (8) (611) (422) (332) (521) (3221) (5111) (2222) (431) (22211) (4211) (41111) (3311) (32111) (311111) (221111) (2111111) (11111111)
Crossrefs
Programs
-
Mathematica
modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&]; Table[Length[Select[IntegerPartitions[n], If[Length[#]==0,0,First[modes[#]]]==k&]],{n,0,15},{k,0,n}]
Comments